首页 | 本学科首页   官方微博 | 高级检索  
     


Open and porous NiS2 nanowrinkles grown on non-stoichiometric MoOx nanorods for high-performance alkaline water electrolysis and supercapacitor
Affiliation:Henan Key Laboratory of Polyoxometalate Chemistry, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
Abstract:Hierarchical hybrid heterostructures are regarded to be promising materials for highly efficient bifunctional electrocatalysts and high-performance supercapacitors due to their intriguing morphological features and remarkable electrochemical properties. Herein, we demonstrate the rational construct of cost-effective MoOx@NiS2 hybrid nanostructures as bifunctional electrocatalysts and the electrode material of supercapacitor. Microstructural analysis shows that the hybrid is a kind of hierarchical heterostructure composed of open and porous NiS2 nanowrinkles in situ grown on non-stoichiometric MoOx nanorods, which greatly improves the conductivity, and effectively maximized the electrochemical surface area. As expected, the MoOx@NiS2 hybrid show remarkable electrocatalytic performance in alkaline media, such as overpotentials of 101 mV at 10 mA cm?2 for hydrogen evolution reaction (HER) and 278 mV at 20 mA cm?2 for oxygen evolution reaction (OER), and a low cell voltage of 1.62 V to deliver a current density of 10 mA cm?2. Moreover, the hybrid nanostructures present a high specific capacitance 1050 A/g at 1 A/g with ultra-long stability in 6 M KOH. The strategy proposed here introduces a new perspective about the development of efficient earth-abundant bifunctional elecrocatalysts and electrode materials for superior energy conversion and storage devices.
Keywords:Bifunctional electrocatalysts  Hydrogen evolution reaction  Oxygen evolution reaction  Overall water splitting  Supercapacitors  Hierarchical hybrid heterostructures
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号