首页 | 本学科首页   官方微博 | 高级检索  
     


High-performance vertically aligned Bi2O3 nanosheet arrays for water splitting applications by controlling the chemical bath deposition method parameters (precursor concentration and pH)
Affiliation:School of Metallurgy and Materials Engineering, Iran University of Science & Technology, Tehran, Iran
Abstract:In this work, vertically aligned β-Bi2O3 nanosheet arrays are deposited on FTO using a simple, cost-effective, low-temperature, and easy-tunable technique called chemical bath deposition. Coatings were deposited through selective correlation of varying bismuth ion concentrations at fixed pH and, also, a fixed bismuth ion concentration at different pH values to optimize their structure, morphology, and optical properties. With an increase in bismuth precursor concentration from 0.008 M to 0.5 M, a more crystallized and compact coating with finer nanosheets was formed. Low pH values tended to result in either no coating or a coating composed of discrete particles. As the pH increased to the optimal level, a thicker and more compact coating with a morphology made of thicker and wider nanosheets was formed. Further increase in pH led to a non-uniform coating composed of small and large nanosheets that could not cover the entire surface of the substrate. The optimized photoelectrode exhibited a maximum photocurrent density of 470 μA/cm2 at 1.23 VRHE under 100 mW/cm2 simulated sunlight, which is among the top recorded values of Bi2O3 photoelectrodes.
Keywords:Chemical bath deposition  Precursor concentration  pH  Photoelectrochemical water splitting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号