首页 | 本学科首页   官方微博 | 高级检索  
     


Loop-tree implementation of the adaptive integral method (AIM) for numerically-stable, broadband, fast electromagnetic modeling
Authors:Okhmatovski  VI Morsey  JD Cangellaris  AC
Affiliation:Cadence Design Syst. Inc., Tempe, AZ, USA;
Abstract:The adaptive integral method (AIM) is implemented in conjunction with the loop-tree (LT) decomposition of the electric current density in the method of moments approximation of the electric field integral equation. The representation of the unknown currents in terms of its solenoidal and irrotational components allows for accurate, broadband electromagnetic (EM) simulation without low-frequency numerical instability problems, while scaling of computational complexity and memory storage with the size of the problem are of the same order as in the conventional AIM algorithm. The proposed algorithm is built as an extension to the conventional AIM formulation that utilizes roof-top expansion functions, thus providing direct and easy way for the development of the new stable formulation when the roof-top based AIM is available. A new preconditioning strategy utilizing near interactions in the system which are typically available in the implementation of fast solvers is proposed and tested. The discussed preconditioner can be used with both roof-top and LT formulations of AIM and other fast algorithms. The resulting AIM implementation is validated through its application to the broadband, EM analysis of large microstrip antennas and planar interconnect structures.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号