首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进的K-均值聚类图像分割算法
作者单位:湖南师范大学数学与计算机科学学院 湖南长沙410081
摘    要:K-均值聚类是一种被广泛应用的方法。本文提出了基于K-均值聚类的改进算法,并应用于图像分割。针对K-均值聚类算法对离群点的反应过强的缺点,通过替换中心点,比较代价函数,来达到改进划分结果的目的。实验结果表明,该方法能有效改善聚类中心,提高分类精度和准确性。

关 键 词:图像分割  K-均值  聚类

Image Segmentation Based-on an Improved K-Means Clustering Algorithm
LIU Juan,MAN Jia-ju. Image Segmentation Based-on an Improved K-Means Clustering Algorithm[J]. Digital Community & Smart Home, 2008, 0(16)
Authors:LIU Juan  MAN Jia-ju
Abstract:K-Means clustering is a very popular clustering technique which is widely used in numerous applications. This paper presents an improved algorithm for K-Means, and applied it in image segmentation. For the disadvantage of K-Means to the outlier, we improved the result on replacing the centroids and comparing the criterion function. An inspection of the results shows that this method significantly outperformed the K-Means in image segmentation.
Keywords:Image segmentation  K-Means  Clustering
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号