首页 | 本学科首页   官方微博 | 高级检索  
     


Boundary element analysis of three‐dimensional cracks in anisotropic solids
Authors:Ernian Pan  F G Yuan
Abstract:This paper presents a boundary element analysis of linear elastic fracture mechanics in three‐dimensional cracks of anisotropic solids. The method is a single‐domain based, thus it can model the solids with multiple interacting cracks or damage. In addition, the method can apply the fracture analysis in both bounded and unbounded anisotropic media and the stress intensity factors (SIFs) can be deduced directly from the boundary element solutions. The present boundary element formulation is based on a pair of boundary integral equations, namely, the displacement and traction boundary integral equations. While the former is collocated exclusively on the uncracked boundary, the latter is discretized only on one side of the crack surface. The displacement and/or traction are used as unknown variables on the uncracked boundary and the relative crack opening displacement (COD) (i.e. displacement discontinuity, or dislocation) is treated as a unknown quantity on the crack surface. This formulation possesses the advantages of both the traditional displacement boundary element method (BEM) and the displacement discontinuity (or dislocation) method, and thus eliminates the deficiency associated with the BEMs in modelling fracture behaviour of the solids. Special crack‐front elements are introduced to capture the crack‐tip behaviour. Numerical examples of stress intensity factors (SIFs) calculation are given for transversely isotropic orthotropic and anisotropic solids. For a penny‐shaped or a square‐shaped crack located in the plane of isotropy, the SIFs obtained with the present formulation are in very good agreement with existing closed‐form solutions and numerical results. For the crack not aligned with the plane of isotropy or in an anisotropic solid under remote pure tension, mixed mode fracture behavior occurs due to the material anisotropy and SIFs strongly depend on material anisotropy. Copyright © 2000 John Wiley & Sons, Ltd.
Keywords:boundary element method  fracture mechanics  stress intensity factor  crack opening displacement  dislocations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号