首页 | 本学科首页   官方微博 | 高级检索  
     


Role of chromium on mechanical properties of Fe-Mn-Ni-Mo-Ti maraging steels
Authors:Nam-Hoe Heo  Hu -Chul Lee
Affiliation:1. Department of Materials Science and Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
2. Department of Metallurgical Engineering, Seoul National University, 151-742, Seoul, Korea
Abstract:This experiment investigated the role of chromium in the mechanical properties of Fe-5Mn-9Ni-5Mo-1.5Ti maraging steels containing up to 3% chromium. Remarkable age-hardening responses were observed in the Fe-5Mn-9Ni-5Mo-1.5Ti and Cr-bcaring alloys. A ductile-brittle-ductile transition occurred in the Cr-bearing alloys during isothermal aging below 510°C. This was due to the segregation of titanium and manganese to prior austenite grain boundaries and their subsequent desegregation into the matrix. The addition of chromium to the base alloy considerably improved its ductility after aging at 520°C. From microstructure and AES analyses, it is suggested that chromium addition augments the volume fractions of (Fe,Mn)2Mo and η-Ni3Ti precipitates in the Fe-5Mn-9Ni-5Mo-Cr alloys, which act as sinks of manganese and titanium in the matrices. This resulted in the reduction of the alloying elements concentration in the matrix, which is followed by the reduction in the segregation level of the elements at prior austenite grain boundaries, and consequently enhanced intergranular fracture strength. The optimum combination of strength and ductility was obtained in the Fe-5Mn-9Ni-5Mo-3Cr-l.5Ti alloy aged at 520°C for 2 hr. and was σ0 2=1721 MPa, σLS=1756 MPa. and ε,= 10.2%.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号