首页 | 本学科首页   官方微博 | 高级检索  
     

面向高维数据的Takagi-Sugeno模糊系统建模新方法
引用本文:林得富, 王骏, 蒋亦樟, 王士同. 面向高维数据的Takagi-Sugeno模糊系统建模新方法[J]. 电子与信息学报, 2018, 40(6): 1404-1411. doi: 10.11999/JEIT170792
作者姓名:林得富  王骏  蒋亦樟  王士同
基金项目:国家自然科学基金(61300151),江苏省自然科学基金(BK20160187, BK20161268),中央高校基本科研业务费专项项目(JUSRP11737)
摘    要:对高维数据进行建模是Takagi-Sugeno(T-S)模糊系统建模面临的一个重大挑战。为此,该文提出一种特征选择与组稀疏编码相结合的模糊系统建模新方法WOMP-GS-FIS。首先,运用一种新型的加权正交匹配追踪算法对原始样本进行特征选择,在此基础上提取出模糊规则前件并产生模糊系统字典;然后,基于组稀疏正则化构造关于后件参数的组稀疏优化问题,在优化问题求解的同时得到重要的模糊规则。实验结果表明,在保证模型泛化性能的前提下,该方法不仅能对所获得的模糊规则结构进行精简还可以进一步减少模糊规则数,进而解决高维数据环境下模糊规则可解释性差的问题。

关 键 词:T-S模糊系统建模   特征选择   组稀疏编码   精简规则结构   模糊规则约减
收稿时间:2017-08-07
修稿时间:2018-03-27

A Novel Takagi-Sugeno Fuzzy Systems Modeling Method for High Dimensional Data
LIN Defu, WANG Jun, JIANG Yizhang, WANG Shitong. A Novel Takagi-Sugeno Fuzzy Systems Modeling Method for High Dimensional Data[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1404-1411. doi: 10.11999/JEIT170792
Authors:LIN Defu  WANG Jun  JIANG Yizhang  WANG Shitong
Abstract:It is a great challenge to model Takagi-Sugeno(T-S) fuzzy systems on high dimensional data due to the problem of the curse of dimensionality. To this end, a novel T-S fuzzy system modeling method called WOMP-GS-FIS is proposed. The proposed method considers feature selection and group sparse coding simultaneously. Specifically, feature selection is performed by a novel Weighted Orthogonal Matching Pursuit (WOMP) method, based on which the fuzzy rule antecedent part is extracted and the dictionary of the fuzzy system is generated. Then, a group sparse optimization problem based on the group sparse regularization is formulated to obtain the optimal consequent parameters. In this way, the major fuzzy rules are selected by utilizing the group information that existing in the T-S fuzzy systems. The experimental results show that the proposed method can not only simplify the rule,s structure, but also reduce the number of fuzzy rules under the premise of good generalization performance, so as to solve the poor interpretation problem of fuzzy rules on high dimensional data effectively.
Keywords:T-S fuzzy systems modeling  Feature selection  Group sparse coding  Simplify rule's structure  Fuzzy rules reduction
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号