首页 | 本学科首页   官方微博 | 高级检索  
     

基于稀疏贝叶斯学习的网格自适应多源定位
引用本文:游康勇, 杨立山, 刘玥良, 郭文彬, 王文博. 基于稀疏贝叶斯学习的网格自适应多源定位[J]. 电子与信息学报, 2018, 40(9): 2150-2157. doi: 10.11999/JEIT171238
作者姓名:游康勇  杨立山  刘玥良  郭文彬  王文博
作者单位:1.北京邮电大学信息与通信工程学院 北京 100876;;2.通信网信息传输与分发技术重点实验室 石家庄 050000
基金项目:国家自然科学基金(61271181, 61571054),通信网信息传输与分发技术重点实验室基金
摘    要:多源定位是信号处理中的重要问题。该文针对目标偏离初始网格点引起的基不匹配问题,构建具有Laplace先验的稀疏贝叶斯学习框架,提出基于稀疏贝叶斯学习的网格自适应多源定位算法AGMTL。本质上,AGMTL实现了稀疏信号重建和网格自适应定位字典的学习。仿真结果表明,AGMTL通过网格自适应调整,在定位误差,估计可靠性,抗噪性能上均远远优于传统的压缩感知定位算法。

关 键 词:多源定位   压缩感知   网格自适应模型   稀疏贝叶斯学习   Laplace先验
收稿时间:2017-12-28
修稿时间:2018-05-23

Adaptive Grid Multiple Sources Localization Based on Sparse Bayesian Learning
Kangyong YOU, Lishan YANG, Yueliang LIU, Wenbin GUO, Wenbo WANG. Adaptive Grid Multiple Sources Localization Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2150-2157. doi: 10.11999/JEIT171238
Authors:Kangyong YOU  Lishan YANG  Yueliang LIU  Wenbin GUO  Wenbo WANG
Affiliation:1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;;2. Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, Shijiazhuang 050000, China
Abstract:Multiple sources localization is an issue of theoretical importance and practical significance in signal processing. The basis mismatch problem caused by target deviation from the initial grid point is addressed. Based on sparse Bayesian learning framework with Laplace prior, a novel iterative Adaptive Grid Multiple Targets Localization (AGMTL) algorithm is proposed to tackle the practical situation in which the targets deviates from the initial grid point. In essence, AGMTL algorithm implements sparse signal reconstruction and adaptive grid localization dictionary learning jointly. The simulation results show that AGMTL algorithm outperforms the traditional Compressive Sensing (CS) based localization algorithm in the terms of localization error, estimation reliability and noise robustness.
Keywords:Multiple sources localization  Compressive Sensing (CS)  Adaptive grid model  Sparse Bayesian learning  Laplace prior
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号