首页 | 本学科首页   官方微博 | 高级检索  
     

基于级联卷积神经网络的机器人平面抓取位姿快速检测
引用本文:夏晶,钱堃,马旭东,刘环. 基于级联卷积神经网络的机器人平面抓取位姿快速检测[J]. 机器人, 2018, 40(6): 794-802. DOI: 10.13973/j.cnki.robot.170702
作者姓名:夏晶  钱堃  马旭东  刘环
作者单位:1. 东南大学自动化学院, 江苏 南京 210096;
2. 复杂工程系统测量与控制教育部重点实验室, 江苏 南京 210096
基金项目:国家自然科学基金(61573101)
摘    要:针对任意姿态的未知不规则物体,提出一种基于级联卷积神经网络的机器人平面抓取位姿快速检测方法.建立了一种位置-姿态由粗到细的级联式两阶段卷积神经网络模型,利用迁移学习机制在小规模数据集上训练模型,以R-FCN(基于区域的全卷积网络)模型为基础提取抓取位置候选框进行筛选及角度粗估计,并针对以往方法在姿态检测上的精度不足,提出一种Angle-Net模型来精细估计抓取角度.在Cornell数据集上的测试及机器人在线抓取实验结果表明,该方法能够对任意姿态、不同形状的不规则物体快速计算最优抓取点及姿态,其识别准确性和快速性相比以往方法有所提高,鲁棒性和稳定性强,且能够泛化适应未训练过的新物体.

关 键 词:平面抓取  级联卷积神经网络  两阶段机器人抓取检测  迁移学习  
收稿时间:2017-12-28

Fast Planar Grasp Pose Detection for Robot Based on Cascaded Deep Convolutional Neural Networks
XIA Jing,QIAN Kun,MA Xudong,LIU Huan. Fast Planar Grasp Pose Detection for Robot Based on Cascaded Deep Convolutional Neural Networks[J]. Robot, 2018, 40(6): 794-802. DOI: 10.13973/j.cnki.robot.170702
Authors:XIA Jing  QIAN Kun  MA Xudong  LIU Huan
Affiliation:1. School of Automation, Southeast University, Nanjing 210096, China;
2. Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Nanjing 210096, China
Abstract:A fast planar grasp pose detection method for robot based on cascaded convolutional neural networks is proposed to detect the pose for the unknown irregular objects with arbitrary poses. A cascaded two-stage convolution neural network model based on from coarse-to fine-scale position-attitude is established. The transfer-learning mechanism is used to train the model on small scale data sets. The grasp position candidate bounding-boxes are extracted and the coarse angle is estimated based on the R-FCN (region-based fully convolutional network) model. Angle-Net is proposed to solve the low accuracy detection problem of the previous methods, which can estimate the grasp angles with higher accuracy. Validations on the Cornell dataset and online grasp experiments on the real robot indicate that the proposed method can fast calculate the optimal grasp point and attitude for irregular objects with any shape and pose, the detection accuracy and speed are improved compared with the previous methods, the robustness and stability are strong, and it can be generalized to adapt to new object untrained.
Keywords:planar grasp  cascaded deep convolutional neural network  two-stage grasp pose detection  transfer-learning  
点击此处可从《机器人》浏览原始摘要信息
点击此处可从《机器人》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号