首页 | 本学科首页   官方微博 | 高级检索  
     


A two-step approach to synthesis of Co(OH)2/γ-NiOOH/reduced graphene oxide nanocomposite for high performance supercapacitors
Authors:Ke ZHAN  Tong YIN  Yuan XUE  Yinwen TAN  Yihao ZHOU  Ya YAN  Bin ZHAO
Affiliation:1. School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China2. Shanghai Innovation Institute for Materials,?Shanghai 200444,?China
Abstract:A two-step approach was reported to fabricate cobaltous?hydroxide/γ-nickel?oxide?hydroxide/reduced graphene oxide (Co(OH)2/γ-NiOOH/RGO) nanocomposites on nickel foam by combining the reduction of graphene oxide with the help of reflux condensation and the subsequent hydrothermal of Co(OH)2 on RGO. The microstructural, surface morphology and electrochemical properties of the Co(OH)2/γ-NiOOH/RGO nanocomposite were investigated. The results showed that the surface of the first-step fabricated γ-NiOOH/RGO nanocomposites was uniformly coated by Co(OH)2 nanoflakes with lateral size of tens of nm and thickness of several nm. Co(OH)2/γ-NiOOH/RGO nanocomposite demonstrated a high specific capacitance (745 mF/cm2 at 0.5 mA/cm2) and a cycling stability of 69.8% after 1000 cycles at 30 mV/cm2. γ-NiOOH/RGO//Co(OH)2/γ-NiOOH/RGO asymmetric supercapacitor was assembled, and maximum gravimetric energy density of 57.3 W?h/kg and power density of 66.1 kW/kg were achieved. The synergistic effect between the highly conductive graphene and the nanoflake Co(OH)2 structure was responsible for the high electrochemical performance of the hybrid electrode. It is expected that this research could offer a simple method to prepare graphene-based electrode materials.
Keywords:reflux condensation  graphene  cobaltous?hydroxide  supercapacitor  
点击此处可从《材料科学前沿(英文版)》浏览原始摘要信息
点击此处可从《材料科学前沿(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号