首页 | 本学科首页   官方微博 | 高级检索  
     


Development of thermosensitive poly(n-isopropylacrylamide-co-((2-dimethylamino) ethyl methacrylate))-based nanoparticles for controlled drug release
Authors:Peng Cheng-Liang  Tsai Han-Min  Yang Shu-Jyuan  Luo Tsai-Yueh  Lin Chia-Fu  Lin Wuu-Jyh  Shieh Ming-Jium
Affiliation:Isotope Application Division, Institute of Nuclear Energy Research, Longtan Taoyuan, Taiwan.
Abstract:Thermosensitive nanoparticles based on poly(N-isopropylacrylamide-co-((2-dimethylamino)ethylmethacrylate)) (poly(NIPA-co-DMAEMA)) copolymers were successfully fabricated by free radical polymerization. The lower critical solution temperature (LCST) of the synthesized nanoparticles was 41?°C and a temperature above which would cause the nanoparticles to undergo a volume phase transition from 140 to 100 nm, which could result in the expulsion of encapsulated drugs. Therefore, we used the poly(NIPA-co-DMAEMA) nanoparticles as a carrier for the controlled release of a hydrophobic anticancer agent, 7-ethyl-10-hydroxy-camptothecin (SN-38). The encapsulation efficiency and loading content of SN-38-loaded nanoparticles at an SN-38/poly(NIPA-co-DMAEMA) ratio of 1/10 (D/P = 1/10) were about 80% and 6.293%, respectively. Moreover, the release profile of SN-38-loaded nanoparticles revealed that the release rate at 42?°C (above LCST) was higher than that at 37?°C (below LCST), which demonstrated that the release of SN-38 could be controlled by increasing the temperature. The cytotoxicity of the SN-38-loaded poly(NIPA-co-DMAEMA) nanoparticles was investigated in human colon cancer cells (HT-29) to compare with the treatment of an anticancer drug, Irinotecan(?) (CPT-11). The antitumor efficacy evaluated in a C26 murine colon tumor model showed that the SN-38-loaded nanoparticles in combination with hyperthermia therapy efficiently suppressed tumor growth. The results indicate that these thermo-responsive nanoparticles are potential carriers for controlled drug delivery.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号