首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的电力通信网风险评估方法
引用本文:亓 峰 李 琪 韩 骞 杜 益 邱雪松. 基于神经网络的电力通信网风险评估方法[J]. 北京邮电大学学报, 2014, 37(1): 90-93. DOI: 10.13190/j.jbupt.2014.01.020
作者姓名:亓 峰 李 琪 韩 骞 杜 益 邱雪松
作者单位:1. 北京邮电大学 网络与交换技术国家重点实验室, 北京 100876;
2. 中国电子系统工程总公司, 北京 100840
基金项目:国家高技术研究发展计划项目(2012AA050801)
摘    要:提出了一种基于神经网络的电力通信网风险评估算法--基于二分法的学习速率自适应BP(back propagation)神经网络算法. 该算法在网络训练过程中使用二分法调整学习速率,使得学习速率在训练过程中不断向最优化方向自动调整. 仿真结果表明,收敛速度、误差精度和训练时间等算法性能得到了优化.

关 键 词:BP神经网络  学习速率  二分法  电力通信网  风险评估  
收稿时间:2013-04-07

A Neural Network Based Method to Assess Electric Power Communication Network Risk
QI Feng,LI Qi,HAN Qian,DU Yi,QIU Xue-song. A Neural Network Based Method to Assess Electric Power Communication Network Risk[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(1): 90-93. DOI: 10.13190/j.jbupt.2014.01.020
Authors:QI Feng  LI Qi  HAN Qian  DU Yi  QIU Xue-song
Affiliation:1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2. China Electronic Systems Engineering Corporation, Beijing 100840, China
Abstract:An improved back propagation neural network algorithm based on dichotomy was proposed for assessment of electric power communication network risk. The dichotomy was used to adjust the learning rate in the training process. It helps to change the learning rate automatically to the direction of optimization. Simulation shows that the improved algorithm's performance is optimized, such as convergence rate、error accuracy and training time.
Keywords:back propagation neural network  learning rate  dichotomy  electric power communication network  assessment of risk  
本文献已被 CNKI 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号