首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical study of a flat-tube high power density solid oxide fuel cell: Part I. Heat/mass transfer and fluid flow
Authors:Yixin Lu  Laura Schaefer  Peiwen Li  
Affiliation:

Department of Mechanical Engineering, University of Pittsburgh, Benedum Engineering Hall, Pittsburgh, PA 15261, USA

Abstract:The flat-tube high power density (HPD) solid oxide fuel cell (SOFC) is a new design developed by Siemens Westinghouse, based on their formerly developed tubular type SOFC. It has increased power density, but still maintains the beneficial feature of secure sealing of a tubular SOFC. In this paper, a three-dimensional numerical model to simulate the steady state heat/mass transfer and fluid flow of a flat-tube HPD-SOFC is developed. In the numerical computation, governing equations for continuity, momentum, mass, and energy conservation are solved simultaneously. The highly coupled temperature, concentration and flow fields of the air stream and the fuel stream inside and outside the different chambers of a flat-tube HPD-SOFC are investigated. The variation of the temperature, concentration and flow fields with the current output is studied. The heat/mass transfer and fluid flow modeling and results will be used to simulate the overall performance of a flat-tube HPD-SOFC, and to help optimize the design and operation of a SOFC stack in practical applications.
Keywords:Flat-tube  High power density  Solid oxide fuel cell  Simulation  Heat and mass transfer  Fluid flow
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号