首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media
Authors:Franchi Alessandro  O'Melia Charles R
Affiliation:Malcolm Pirnie Inc., 1101 Wilson Boulevard, Suite 1400, Arlington, Virginia 22209, USA. afranchi@pirnie.com
Abstract:The role of humic acid in the transport of negatively charged colloids through porous media was examined. Adsorption of humic acid on latex colloids and silica collectors reduced the deposition of suspended particles and enhanced the reentrainment of deposited particles in porous media. These effects are considered to arise from additional electrostatic and steric contributions to the repulsive interaction energy due to the adsorption of negatively charged humic acid on both the suspended particles and the media collectors. At low ionic strength reversible deposition in shallow secondary minima is hypothesized to be the principal attachment mechanism, independent of the presence of humic acid. It is proposed that under these solution conditions, particle deposition and reentrainment are the result of a dynamic process, in which particles are continuously captured and released from secondary minima. At higher ionic strengths, deposition may be regarded as a combination of two mechanisms: capture in the primary well and capture in the secondary minimum. Theoretical calculations of the attachment efficiency were conducted using two existing mathematical models. The first model is based on deposition in the primary well (interaction force boundary layer, IFBL), and the second model is based on the Maxwell kinetic theory and deposition in the secondary minimum (Maxwell model). Simulations conducted with the Maxwell model provide significantly better fits of the experimental results than those conducted with the IFBL model.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号