摘 要: | 基于现有去雾算法存在去雾效果不佳和去雾效率低等问题,提出了一种改进AOD-Net网络模型。首先对输入图像进行随机噪声添加,提高图像模型去雾鲁棒性。接着对不同尺度的卷积核进行多线程处理,同时将图像中的特征信息提取,然后利用注意力机制进行权重分配,采集图像中的纹理信息和细腻化特征信息,提升图像的质量。最后对提取的特征信息利用AOD-Net模型的前两层卷积进行二次特征提取,估计出联合参数,输出去雾后的图像。实验结果表明,采用本算法得到的第一组和第二组图像峰值信噪比分别为20.05和16.92,结构相似性分别为0.85和0.83,IE熵值分别为7.48和7.75,各项数值均有提升,图像去雾效果更好,证明了本算法的有效性。
|