Electrochemical characterization of chemical species formed during the electrochemical treatment of chalcopyrite in sulfuric acid |
| |
Authors: | Dora Nava |
| |
Affiliation: | Universidad Autónoma Metropolitana-Iztapalapa, Depto. de Química, Área de Electroquímica, A.P. 55-534, C.P. 09340 México, D.F., Mexico |
| |
Abstract: | The dissolution mechanism of chalcopyrite, and the potential range in which its passivation phenomenon takes place, were studied on carbon paste electrodes with chalcopyrite (99.46% purity, +300 mesh, 53 μm size) (CPE-CP) in 1.7 mol/dm3 H2SO4. A sequence of anodic potential pulses was applied to the CPE-CP to characterize its electrochemical behavior. Copper ions, dissolved by the potential pulses, were determined using a mercury film electrode (MFE) and the anodic stripping voltammetry (ASV) on a vitreous carbon disk. In addition, the modified surface of CPE-CP was characterized, before and after the potential pulses, by cyclic voltammetry (CV). The characterization of the final surface state of each electrochemically modified CPE-CP and the amount of dissolved copper showed five potential regions where the chalcopyrite dissolution mechanism changed. The initial dissolution occurs at 0.615 V ≤ Eanod < 1.015 V versus SHE forming a non-stoichiometric polysulfide (Cu1−rFe1−sS2−t). The absence of copper ions in the solution indicates a passive sulfide. However, at 1.015 V ≤ Eanod < 1.085 V versus SHE, the passive product decomposes forming porous layers of non-stoichiometric polysulfide (Cu1−xFe1−yS2−z) that allow the diffusional transport of charged species and the dissolution of the mineral. In the region of 1.085 V ≤ Eanod < 1.165 V versus SHE, formation covellite (CuS) was identified. At E > 1.165 V versus SHE, CuS is unstable and gives rise to complete dissolution of the chalcopyrite. Due to the experimental conditions, the mineral dissolution is inhibited by possible jarosite precipitation. |
| |
Keywords: | Chalcopyrite Passive films Carbon paste electrode Non-stoichiometric polysulfides Covellite Jarosite |
本文献已被 ScienceDirect 等数据库收录! |
|