首页 | 本学科首页   官方微博 | 高级检索  
     

新型环保海洋防污材料研究进展
引用本文:叶章基,陈珊珊,马春风,吴建华,张广照.新型环保海洋防污材料研究进展[J].表面技术,2017,46(12):62-70.
作者姓名:叶章基  陈珊珊  马春风  吴建华  张广照
作者单位:华南理工大学,广州 510640;海洋腐蚀与防护重点实验室,福建 厦门 361101;厦门双瑞船舶涂料有限公司,福建 厦门 361101;厦门双瑞船舶涂料有限公司,福建 厦门,361101;华南理工大学,广州,510640;海洋腐蚀与防护重点实验室,福建 厦门 361101;厦门双瑞船舶涂料有限公司,福建 厦门 361101
基金项目:“十三五”国家海洋经济创新发展示范项目(16CZB023SF12);海洋公益科研专项(201305016);福建省海洋生物资源开发利用协同创新中心产学研基金(FJMBIO1504)
摘    要:简要论述了海洋防污材料的发展历史及其防污机理,评述了新型环保高性能海洋防污材料的最新研究进展。自有机锡自抛光防污涂料被禁用后,基于聚丙烯酸锌、聚丙烯酸铜和聚丙烯酸硅烷酯的无锡自抛光防污涂料得到了广泛应用。为进一步提升其防污性能和环保性能,接枝防污官能团防污材料、生物降解高分子基防污材料、主链降解型自抛光防污材料、减阻型防污材料以及仿生防污材料成为当今的研究热点。介绍了席夫碱、草甘膦、苯并异噻唑啉酮等几种防污官能团的接枝方法及其防污效果,指出这类方法可提高防污剂的利用率,使防污剂释放更平稳,但实用化还需解决防污剂接枝改性后防污能力下降以及合成工艺复杂等问题。重点介绍了生物降解高分子基防污材料,特别是主链降解-侧链水解型防污材料的结构和合成方法。由于该类可降解/水解树脂具有良好的力学性能和水解可调控性,所制备的防污涂料即使在静态下,防污剂也释放平稳,因此可用于开发新型主链降解型自抛光防污涂料,以提高涂层的静态防污长效性,具有良好的应用前景。还介绍了通过对高分子树脂改性等方法降低涂层水解后的表面粗糙度,该类防污涂层具有良好的减阻性能。最后介绍了仿生防污材料的研究进展。

关 键 词:海洋防污  自抛光  防污功能基团  主链降解  减阻  仿生材料
收稿时间:2017/6/9 0:00:00
修稿时间:2017/12/20 0:00:00

Development of Novel Environment-friendly Antifouling Materials
YE Zhang-ji,CHEN Shan-shan,MA Chun-feng,WU Jian-hua and ZHANG Guang-zhao.Development of Novel Environment-friendly Antifouling Materials[J].Surface Technology,2017,46(12):62-70.
Authors:YE Zhang-ji  CHEN Shan-shan  MA Chun-feng  WU Jian-hua and ZHANG Guang-zhao
Affiliation:1. South China University of Technology, Guangzhou 510640, China; 2. Key Laboratory of Marine Corrosion and Protection, Xiamen 361101, China; 3. Xiamen Sunrui Ship Coating Co., Ltd, Xiamen 361101, China,Xiamen Sunrui Ship Coating Co., Ltd, Xiamen 361101, China,South China University of Technology, Guangzhou 510640, China,1. Key Laboratory of Marine Corrosion and Protection, Xiamen 361101, China; 2. Xiamen Sunrui Ship Coating Co., Ltd, Xiamen 361101, China and South China University of Technology, Guangzhou 510640, China
Abstract:Development history and antifouling mechanisms of marine antifouling materials were briefly reviewed, and the latest research progress of novel environmental-friendly antifouling materials was presented. After tributyltin-containing self-polishing copolymer (SPC) coatings were prohibited, copper, zinc and silyl acrylate polymers-based coatings have been widely used. In order to further improve the antifouling properties and environmental protection performance, research is now focusing on grafted antifouling functional group materials, biodegradable macromolecule-based antifouling materials, main chain degradable self-polishing antifouling materials, anti-drag antifouling materials and biomimetic antifouling materials. Grafting methods and antifouling effects of several antifouling functional groups such as Schiff base, glyphosate and benzisothiazolinone were introduced. It was pointed out that such methods could improve utilization ratio of antifoulant and gain a steady release rate of antifoulant. However, such problems as reduced antifouling capacity due to grafting modification and complex synthesis process should be solved to apply such methods. Moreover, structure and synthesis methods of biodegradable macromolecule-based antifouling materials, especially main chain degradable and side chain hydrolysable were introduced emphatically. As these hydrolysable/degradable resins exhibited good mechanical properties and hydrolysis controlled performance, the anti-fouling coatings as-prepared could release antifoulant steadily even in static state. Therefore, the resins could be used to develop novel main chain degradable self-polishing antifouling coatings, so as to improve durability of the coatings in static state, the resins had good application prospects. Methods of reducing surface roughness of the antifouling coatings after hydrolysis such as macromolecule resin modification were introduced as well. Such anti-fouling coatings exhibited good anti-drag resistance. Finally, the progress of biomimetic antifouling materials was introduced.
Keywords:marine antifouling  self-polishing  antifouling functional groups  main-chain degradation  drag reduction  biomimetic materials
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《表面技术》浏览原始摘要信息
点击此处可从《表面技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号