首页 | 本学科首页   官方微博 | 高级检索  
     

被动微波雪深反演算法在东北地区的时空分析与验证
引用本文:武黎黎,李晓峰,赵凯,郑兴明,丁艳玲,李洋洋,任建华. 被动微波雪深反演算法在东北地区的时空分析与验证[J]. 遥感技术与应用, 2015, 30(3): 565-572. DOI: 10.11873/j.issn.1004-0323.2015.3.0565
作者姓名:武黎黎  李晓峰  赵凯  郑兴明  丁艳玲  李洋洋  任建华
作者单位:(1.中国科学院东北地理与农业生态研究所,吉林 长春 130102;;2.中国科学院大学,北京 100049;;3.中国科学院长春净月潭遥感试验站,吉林 长春 130102)
基金项目:国家863计划项目“遥感产品真实性检验关键技术及其试验验证”(2012AA12A305-5-2),
国家自然科学基金项目“东北地区季节性积雪层中雪粒径的谱分布特征与微波(辐射、散射)特性研究”(41001201),
国家自然科学基金项目“东北地区森林下雪深被动微波遥感反演的关键影响参数观测与研究”(41471289),
吉林省科技发展计划项目“我国东北地区积雪与土壤湿度多源遥感数据产品的开发与应用”(20140101158JC),
国家自然科学基金项目“被动微波遥感土壤水分反演精度与空间异质特征的相关性研究”(41301369)。
摘    要:Chang算法及改进算法是被动微波遥感雪深反演算法中较简单的经验算法。为了评价改进的Chang算法在东北地区的适用性,对改进的Chang算法进行分析与验证。从空间上,选取了84个野外数据采样点和48个气象站点对改进的Chang算法进行分析与验证。结果表明:森林下垫面改进的Chang算法会低估雪深3.6cm,而农田下垫面改进的Chang算法会高估雪深1.5cm。从时间序列上,选取五营、呼中、庆安和巴彦4个气象站点2012年11月15日~2013年2月28日的时间序列雪深数据,对改进的Chang算法进行分析与验证。结果表明:森林下垫面改进的Chang算法会低估雪深,五营站点低估雪深13.7cm,呼中站点低估雪深8.3cm,农田下垫面改进的Chang算法会高估雪深,庆安站点高估雪深3.4cm,巴彦站点高估雪深0.8cm。无论从空间上还是时间序列上,验证结果都表明,农田下垫面时改进的Chang算法的精度比森林下垫面时要高。此外,站点雪深不变而改进的Chang算法反演的雪深却在增大,这可能是由于期间雪粒径不断增大的缘故。

关 键 词:雪深  遥感  被动微波  微波成像仪  东北地区  

The Space-time Analysis and Validation of Snow Depth Inversion Algorithm of Passive Microwave in Northeast China
Wu Lili,Li Xiaofeng,Zhao Kai,Zheng Xingming,Ding Yanling,Li Yangyang,Ren Jianhua. The Space-time Analysis and Validation of Snow Depth Inversion Algorithm of Passive Microwave in Northeast China[J]. Remote Sensing Technology and Application, 2015, 30(3): 565-572. DOI: 10.11873/j.issn.1004-0323.2015.3.0565
Authors:Wu Lili  Li Xiaofeng  Zhao Kai  Zheng Xingming  Ding Yanling  Li Yangyang  Ren Jianhua
Affiliation:(1.Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102,China;;2.University of Chinese Academy of Sciences,Beijing 100049,China;;3.Changchun Jingyuetan Remote Sensing Test Site of Chinese Academy of Sciences,Changchun 130102,China)
Abstract:Chang algorithm and improved Chang algorithm are the simple empirical algorithms of snow depth inversion algorithms of passive microwave remote sensing.In order to evaluate the applicability of the improved Chang algorithm in Northeast China,this paper analyzed and validated improved Chang algorithm.In spatial analysis,this study selected 84 field sampling points and 48 meteorological stations to analyze and validate the improved Chang algorithm.The results showed that when the underlying surface is forest improved Chang algorithm underestimated the snow depth of 3.6 cm,however when the underlying surface is farmland improved Chang algorithm overestimated the snow depth of 1.5cm.In the time series analysis,this study selected snow depth data of four meteorological stations from 15 November 2012 to 28 February 2013 to analyze and validate the improved Chang algorithm,and four meteorological stations are Wuying,Huzhong,Qingan and Bayan respectively.The results showed that when the underlying surface was forest improved Chang algorithm underestimated the snow depth.It underestimated the snow depth of 13.7 cm for Wuying and 8.3 cm for Huzhong.However when the underlying surface was farmland improved Chang algorithm overestimated the snow depth.It overestimated the snow depth of 3.4 cm for Qingan and 0.8 cm for Bayan.The results also showed that when the underlying surface is farmland the accuracy of the improved Chang algorithm is better than that when the underlying surface is forest in spatial analysis and in the time series analysis.Moreover,the snow depth of improved Chang algorithm inversion was increasing and the depth of meteorological stations was constant.The possible cause was that snow grain size was increasing.
Keywords:Snow depth  Remote sensing  Passive microwave  Microwave radiation imager  Northeast China  
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感技术与应用》浏览原始摘要信息
点击此处可从《遥感技术与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号