首页 | 本学科首页   官方微博 | 高级检索  
     


Delayed hydride cracking in Zr-2.5Nb tube with the cooling rate and the notch tip shape
Authors:Young Suk Kim  Sang Jai Kim  Kyung Soo Im
Affiliation:Zirconium Team, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Daejeon 305-353, Korea
Abstract:The objective of this study is to demonstrate the feasibility of the Kim’s delayed hydride cracking (DHC) model. To this end, this study has investigated the velocity and incubation time of delayed hydride cracking (DHC) for the water-quenched and furnace-cooled Zr-2.5Nb tubes with a different radius of notch tip. DHC tests were carried out at constant KI of 20 MPa √m on cantilever beam (CB) specimens subjected to furnace cooling or water quenching after electrolytic charging with hydrogen. An acoustic emission sensor was used to detect the incubation time taken before the start of DHC. The shape of the notch tip changed from fatigue cracks to smooth cracks with its tip radius ranging from 0.1 to 0.15 mm. The DHC incubation time increased remarkably with the increased radius of the notch tip, which appeared more strikingly on the furnace-cooled CB specimens than on the water-quenched ones. However, both furnace-cooled and water-quenched CB specimens indicated little change in DHC velocity with the radius of the notch tip unless their notch tip exceeded 0.125 mm. These results demonstrate that the nucleation rate of hydrides at the notch tip determines the incubation time and the DHC velocity becomes constant after the concentration of hydrogen at the notch tip reaches terminal solid solubility for dissolution (TSSD), which agrees well with the Kim’s DHC model. A difference in the incubation time and the DHC velocity between the furnace-cooled and water-quenched specimens is attributed to the nucleation rate of reoriented hydrides at the notch tip and the resulting concentration gradient of hydrogen between the notch tip and the bulk region.
Keywords:F0600  H0400  Z0100  Z0200
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号