首页 | 本学科首页   官方微博 | 高级检索  
     


The radiative recombination coefficient and the internal quantum yield of electroluminescence in silicon
Authors:A V Sachenko  A P Gorban  V P Kostylyov  I O Sokolovsky
Affiliation:(1) Lashkarev Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kiev, 03028, Ukraine
Abstract:The results of the analysis of variations in the radiative recombination coefficient with varying doping level and concentration of excess electron-hole pairs are reported. It is shown that, along with the effect of narrowing of the band gap calculated in the many-electron approximation, the effect of screening of the Coulomb interaction responsible for the decrease in the excition binding energy should be taken into account. Both effects produce similar trends and decrease the radiative recombination coefficient with increasing levels of doping or injection. The contributions of excitonic radiative recombination and band-to-band radiative recombination to the total radiative recombination coefficient are separated from each other. It is shown that, in the region of room temperature, both contributions are comparable, while at liquid-nitrogen temperature, the excitonic component dominates over the band-to-band component. The results obtained by refined calculations of the limiting value of the internal quantum yield of electroluminescence for the silicon diodes and p-i-n structures are presented. It is shown that the internal quantum yield of electroluminescence can be as high as 14%. However, this values sharply decreases with increasing surface recombination rate and decreasing lifetime of excess charge carriers in the bulk.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号