首页 | 本学科首页   官方微博 | 高级检索  
     

结合多尺度体素和高阶条件随机场的点云分类
引用本文:邵磊,董广军,于英,张阿龙,姚强强. 结合多尺度体素和高阶条件随机场的点云分类[J]. 计算机辅助设计与图形学学报, 2019, 31(3): 385-392
作者姓名:邵磊  董广军  于英  张阿龙  姚强强
作者单位:信息工程大学地理空间信息学院 郑州 450001;中国人民解放军 75838 部队 广州 510000;信息工程大学地理空间信息学院 郑州 450001;信息工程大学地理空间信息学院 郑州 450001;城市空间信息工程北京市重点实验室 北京 100000;地理信息工程国家重点实验室 西安 710054
基金项目:国家自然科学基金;国家重点实验室开放研究项目
摘    要:针对利用经典高阶条件随机场模型进行点云分类时,由于海量节点和无向边导致的点云分类效率低的问题,提出一种结合多尺度体素和高阶条件随机场的点云分类方法.首先以多尺度体素代替海量离散点云作为无向图图模型节点,减少节点和无向边的数量;然后使用超体分割结果作为高阶团,并基于此设计了一种非监督分布性空间上下文作为高阶团特征向量,用于改善分类结果;最后结合构建的图模型和各阶特征向量,采用经典高阶条件随机场模型实现点云数据的自动分类.采用Oakland标准数据集作为实验数据,实验结果表明,该方法在有效地保证分类精度的前提下,高阶条件随机场点云分类模型的分类效率提高了5~10倍.

关 键 词:点云分类  条件随机场  空间上下文  超体分割  多尺度体素

A Point Cloud Classification Method Based on Multi-scale Voxel and Higher Order Random Fields
Shao Lei,Dong Guangjun,Yu Ying,Zhang Along,Yao Qiangqiang. A Point Cloud Classification Method Based on Multi-scale Voxel and Higher Order Random Fields[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(3): 385-392
Authors:Shao Lei  Dong Guangjun  Yu Ying  Zhang Along  Yao Qiangqiang
Affiliation:(Institute of Surveying and Mapping,Information Engineering University,Zhengzhou 450001;75838 PLA Troops,Guangzhou 510000;Beijing Key Laboratory of Urban Spatial Information Engineering,Beijing 100000;State Key Laboratory of Geo-Information Engineering,Xi’an 710054)
Abstract:Aiming at solving the problem of low efficiency of point cloud classification caused by massive nodes and undirected edges when using traditional high-order conditional random field model,a point cloud classification method based on multi-scale voxel and high order random fields is proposed.Firstly,multiscale voxel is utilized as a node of undirected graph to replace the mass of discrete point clouds and reduce the number of nodes and undirected edges.Then,the supervoxel segmentation result is used as a higher-order cluster based on which an unsupervised distributed spatial context is designed as higher-order cluster eigenvector to improve the classification result.Finally,combined with the constructed graph model and each order eigenvector,classical high-order conditional random field model is implemented for automatic point cloud data classification.The Oakland standard dataset is used as the experimental data.Experimental results show that the classification efficiency of the high-order conditional random field point cloud classification model is improved by 5 to 10 times under the premise of ensuring the classification accuracy.
Keywords:point cloud classification  conditional random field  spatial contextual  supervoxel segmentation  multi-scale voxel
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号