首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗配准和互信息的脑部MR图像配准算法
引用本文:金人超,王金华,宋恩民. 基于粗配准和互信息的脑部MR图像配准算法[J]. 计算机仿真, 2007, 24(4): 61-63,99
作者姓名:金人超  王金华  宋恩民
作者单位:华中科技大学,计算机科学与技术学院,湖北,武汉,430074;华中科技大学,计算机科学与技术学院,湖北,武汉,430074;华中科技大学,计算机科学与技术学院,湖北,武汉,430074
摘    要:现有的医学图像配准算法一般都存在需要人工介入、配准时间过长等问题.为了寻找快速、精确、鲁棒性强的自动配准算法,在采用主轴矩方法进行脑部MR(核磁共振)图像的初始配准的基础上,提出局部搜索算法对图像求得更精确的配准.实验表明,该方法的配准精度和现有的Powell算法都可以达到亚像素级,但局部搜索方法和Powell算法相比较,平均配准时间大大缩短;即便和采用了主轴矩粗配准的Powell算法相比较,配准效率也提高了一倍左右.主轴矩粗配准算法提高了配准效率,局部搜索算法则保证了配准的精度.

关 键 词:图像配准  互信息  主轴矩  局部搜索
文章编号:1006-9348(2007)04-0061-03
修稿时间:2006-02-222006-05-17

An Algorithm for Brain MR Image Registration Basedon Rough Registration and Mutual Information
JIN Ren-chao,WANG Jin-hua,SONG En-min. An Algorithm for Brain MR Image Registration Basedon Rough Registration and Mutual Information[J]. Computer Simulation, 2007, 24(4): 61-63,99
Authors:JIN Ren-chao  WANG Jin-hua  SONG En-min
Affiliation:Department of Computer Science and Technology, Huazhong University of Science and Technology Wuhan Hubei 430074,China
Abstract:The existing algorithms for medical image registration always require human intervention and too much time. In order to develop a fast, accurate and anti-noise automated image registration algorithm, the Cross-Weighted Moments algorithm is applied to initialize the registration of the brain MR images for enhancing the efficiency and a local search algorithm is proposed to achieve more accurate registration. The experiments show that the local search algorithm and the Powell algorithm both can reach the sub-pixel level of accuracy but the local search algorithm can shorten much time. Compared with the Powell algorithm which is combined with the Cross-Weighted Moments initialization, the runing time is nearly half shortened.
Keywords:Image registration  Mutual information  Cross-weighted moments  Local search
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号