首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of steel flow stresses at high temperatures and strain rates
Authors:A. Laasraoui  J. J. Jonas
Affiliation:(1) Hatch and Associates, 630 ouest boul. René-Levésque, H3B 1S6, Montreal, Canada;(2) Department of Metallurgical Engineering, McGill University, H3A 2A7, Montreal, Canada
Abstract:The flow behavior of steels during deformation in the roll gap was simulated by means of single hit compression tests performed in the temperature range 800 °C to 1200 °C. Strain rates of 0.2 to 50 s−1 were employed on selected low-carbon steels containing various combinations of niobium, boron, and copper. The stress/strain curves determined at the higher strain rates were corrected for deformation heating so that constitutive equations pertaining to idealized isothermal conditions could be formulated. When dynamic recovery is the only softening mechanism, these involve a rate equation, consisting of a hyperbolic sine law, and an evolution equation with one internal variable, the latter being the dislocation density. When dynamic recrystallization takes place, the incorporation of the fractional softening by dynamic recrystallization in the evolution equation makes it possible to predict the flow stress after the peak. These expressions can be employed in computer models for on-line gage control during hot-rolling.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号