首页 | 本学科首页   官方微博 | 高级检索  
     


0.25 μm gate length CMOS devices for cryogenic operation
Authors:Koga  J Takahashi  M Niiyama  H Iwase  M Fujisaki  M Toriumi  A
Affiliation:ULSI Res. Labs., Toshiba Corp., Kawasaki;
Abstract:Under cryogenic operation, a low Vth realizes a high speed performance at a greatly reduced power-supply voltage, which is the most attractive feature of Cryo-CMOS. It is very important in sub-0.25 μm Cryo-CMOS devices to reconcile the miniaturization and the low Vth. Double implanted MOSFET's technology was employed to achieve the low Vth while maintaining the short channel effects immunity. We have investigated both the DC characteristics and the speed performance of 0.25 μm gate length CMOS devices for cryogenic operation. The measured transconductances in the saturation region were 600 mS/mm for 0.2 μm gate length n-MOSFET's and 310 mS/mm for 0.25 μm gate length p-MOSFET's at 80 K. The propagation delay time in the fastest CMOS ring oscillator was 22.8 ps at Vdd=1 V at 80 K. The high speed performance at extremely low power-supply voltages has been experimentally demonstrated. The speed analysis suggests that the sub-l0 ps switching of Cryo-CMOS devices will be realized by reducing the parasitic capacitances and through further miniaturization down to 0.1 μm gate length or below
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号