首页 | 本学科首页   官方微博 | 高级检索  
     


A dynamic partial reconfigurable system with combined task allocation method to improve the reliability of FPGA
Affiliation:1. Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia;2. Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
Abstract:Currently most FPGAs use SRAM-based technology, which are susceptible to faults from external electromagnetic radiation or produced by long-time internal overload operation. The dynamic partial reconfigurable (DPR) system, as an emerging technology, provides a promising way to solve this problem by reallocating the tasks in damaged resource areas to non-faulty regions at runtime. Based on such idea, an infrastructure for coordinately executing specialized hardware tasks on a reconfigurable FPGA is presented to achieve the flexibility for tolerating the occurring faults at runtime. Moreover, a method named MER-3D-Contact that combines the maximum empty rectangles (MER) technique with the adjacency heuristic is proposed to allocate tasks in the dynamical partial reconfiguration system for higher resource utilization, higher task acceptance ratio and lower fragmentation ratio. At last, experiments are carried out to evaluate the performance of the proposed system, results show that the proposed system can make the highest improvement 36% without damaged areas and the highest improvement 58% with damaged resources in terms of task acceptance ratio. Thus, the proposed system is expected a wide application in the field of more reliable FPGAs.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号