首页 | 本学科首页   官方微博 | 高级检索  
     


The physics and mechanics of fibre-reinforced brittle matrix composites
Authors:A G Evans  F W Zok
Affiliation:(1) Materials Department, College of Engineering, University of California, 9310-5050 Santa Barbara, CA, USA
Abstract:This review compiles knowledge about the mechanical and structural performance of brittle matrix composites. The overall philosophy recognizes the need for models that allow efficient interpolation between experimental results, as the constituents and the fibre architecture are varied. This approach is necessary because empirical methods are prohibitively expensive. Moreover, the field is not yet mature, though evolving rapidly. Consequently, an attempt is made to provide a framework into which models could be inserted, and then validated by means of an efficient experimental matrix. The most comprehensive available models and the status of experimental assessments are reviewed. The phenomena given emphasis include: the stress/strain behaviour in tension and shear, the ultimate tensile strength and notch sensitivity, fatigue, stress corrosion and creep.Nomenclature a i Parameters found in the paper by Hutchinson and Jensen 33], Table IV - a o Length of unbridged matrix crack - a m Fracture mirror radius - a N Notch size - a t Transition flaw size - b Plate dimension - b i Parameters found in the paper by Hutchinson and Jensen 33], Table IV - c i Parameters found in the paper by Hutchinson and Jensen 33], Table IV - d Matrix crack spacing - d s Saturation crack spacing - f Fibre volume fraction - f l Fibre volume fraction in the loading direction - g Function related to cracking of 90 ° plies - h Fibre pull-out length - l Sliding length - l i Debond length - l s Shear band length - m Shape parameter for fibre strength distribution - m m Shape parameter for matrix flaw-size distribution - n Creep exponent - n m Creep exponent for matrix - n f Creep exponent for fibre - q Residual stress in matrix in axial orientation - s ij Deviatoric stress - t Time - t p Ply thickness - t b Beam thickness - u Crack opening displacement (COD) - u a COD due to applied stress - u b COD due to bridging - v Sliding displacement - w Beam width - B Creep rheology parameter epsivo/sgr o n - C v Specific heat at constant strain - E Young's modulus for composite - E o Plane strain Young's modulus for composites - Emacr Unloading modulus - E * Young's modulus of material with matrix cracks - E f Young's modulus of fibre - E m Young's modulus of matrix - E L Ply modulus in longitudinal orientation - E T Ply modulus in transverse orientation - E t Tangent modulus - E s Secant modulus - G Shear modulus - G Energy release rate (ERR) - G tip Tip ERR - G tip o Tip ERR at lower bound - K Stress intensity factor (SIF) - K b SIF caused by bridging - K m Critical SIF for matrix - K R Crack growth resistance - K tip SIF at crack tip - I o Moment of inertia - L Crack spacing in 90 ° plies - L f Fragment length - L g Gauge length - L o Reference length for fibres - N Number of fatigue cycles - N s Number of cycles at which sliding stress reaches steady-state - R Fibre radius - R R-ratio for fatigue (sgrmax/sgrmin) - R c Radius of curvature - S Tensile strength of fibre - S b Dry bundle strength of fibres - S c Characteristic fibre strength - S g UTS subject to global load sharing - S o Scale factor for fibre strength - S p Pull-out strength - S th Threshold stress for fatigue - S u Ultimate tensile strength (UTS) - S * UTS in the presence of a flaw - T Temperature - DeltaT Change in temperature - Deltat Traction function for thermomechanical fatigue (TMF) - Deltat b Bridging function for TMF - agr Linear thermal coefficient of expansion (TCE) - agrf TCE of fibre - agrm TCE of matrix - gamma Shear strain - gammac Shear ductility - deltac Characteristic length - deltaepsiv Hysteresis loop width - epsiv Strain - epsiv* Strain caused by relief of residual stress upon matrix cracking - epsive Elastic strain - epsivo Permanent strain - epsivo Reference strain rate for creep - epsivtau Transient creep strain - epsivs Sliding strain - lambda Pull-out parameter - mgr Friction coefficient - xgr Fatigue exponent (of order 0.1) - kappa Beam curvature - ngr Poisson's ratio - phgr Orientation of interlaminar cracks - rgr Density - sgr Stress - sgrb Bridging stress - ¯sgrb Peak, reference stress - sgre Effective stress = (3/2)s ijsij]1/2 - sgrf Stress in fibre - sgri Debond stress - sgrm Stress in matrix - sgrmc Matrix cracking stress - sgro Stress on 0 ° plies - sgro Creep reference stress - sgrrr Radial stress - sgrR Residual stress - sgrs Saturation stress - sgr s * Peak stress for traction law - sgrtau Lower bound stress for tunnel cracking - sgrT Misfit stress - tau Interface sliding stress - tauf Value of sliding stress after fatigue - tauo Constant component of interface sliding stress - taus In-plane shear strength - ¯tauc Critical stress for interlaminar crack growth - tauss Steady-state value of tau after fatigue - deltaR Displacement caused by matrix removal - Deltaepsivp Unloading strain differential - deltaepsivo Reloading strain differential - Gamma Fracture energy - Gammai Interface debond energy - Gammaf Fibre fracture energy - Gammam Matrix fracture energy - GammaR Fracture resistance - Gammas Steady-state fracture resistance - GammaT Transverse fracture energy - OHgr Misfit strain - OHgro Misfit strain at ambient temperature
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号