首页 | 本学科首页   官方微博 | 高级检索  
     


Double-disk rotating viscous micro-pump with slip flow
Authors:Khaled M. Bataineh  Moh’d A. Al-Nimr  Suhil M. Kiwan
Affiliation:(1) Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid, Jordan
Abstract:In this paper numerical solution was provided for the 2D, axisymmetric Navier-Stokes equations coupled with energy equation for gaseous slip flow between two micro rotating disks pump. A first-order slip boundary condition was applied to all internal solid walls. The objective is to study the effect of Knudsen number, rotational Reynolds number and gap height on pump head, flow rate, coefficient of moments and overall micro-pump efficiency. Pump head, flow rate, coefficient of moments and pump efficiency were calculated for various pump operating conditions when the mass flow rate is applied at the pump inlet port. Detailed investigations were performed for rotational Reynolds number equals to 10. Effect of gap height between the two disks was studied. Effect of rotational Reynolds number on maximum flow rate and maximum pressure rise was simulated. The present numerical results for no-slip were compared with previously published experimental and theoretical data and found to be in a very good agreement. Knudsen number Kn values were found to be major parameters that affect the performance of pump. Pump performance decreases with increasing Kn. Optimal pump performance occurs around middle point of pump operating range. Pump operating range decreases with increasing Kn numbers. Pump performance is found to experience a steep degradation for Kn approaching 0.1. Maximum flow rate increases with rotational speed almost linearly. Maximum pressure rise also increases with rotational speed. Reducing gap height results in increasing maximum pressure rise, while increasing gap height results in larger maximum flow rate.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号