首页 | 本学科首页   官方微博 | 高级检索  
     


One-electron reducibility of isolated copper oxide on alumina for selective NO–CO reaction
Authors:Fumiaki Amano  Sosuke Suzuki  Takashi Yamamoto  Tsunehiro Tanaka  
Affiliation:

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

Abstract:The H2-TPR (temperature-programmed reduction) study was performed for supported copper oxide catalysts with low loading (0.5 wt% as copper). Among the various kinds of support materials (γ-Al2O3, TiO2, ZrO2, SiO2, ZSM-5), alumina-supported copper oxide indicated a one-electron reduction behavior of Cu2+ into Cu+ ions in the presence of H2. The reduction of the isolated Cu2+ species in a tetragonally distorted octahedral symmetry into the low coordinated Cu+ ions was identified by means of X-ray absorption spectroscopy (XANES and EXAFS). The isolated Cu+ ions hosted by γ-Al2O3 surface were prevented from further reduction into metallic Cu0 state under reducing condition with H2 at 773 K. Less dispersed supported copper oxide species were easily reduced to Cu0 metal particles with H2 at 573 K regardless of the kinds of support materials. It is suggested that the one-electron redox behavior of the isolated copper oxide species over γ-Al2O3 promotes the catalytic reduction of NO with CO in the presence of oxygen on the basis of redox-type mechanism between Cu2+ and Cu+ in atomically dispersed state.
Keywords:Cu  Al2O3  NO reduction with CO  Oxygen  Selective catalytic reduction  XAFS
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号