首页 | 本学科首页   官方微博 | 高级检索  
     

基于GM-PHD的目标空间分布感知算法
引用本文:柳毅,张淑芳,索继东. 基于GM-PHD的目标空间分布感知算法[J]. 雷达科学与技术, 2020, 18(3): 279-286
作者姓名:柳毅  张淑芳  索继东
作者单位:大连海事大学,辽宁大连 116026
基金项目:国家自然科学基金(No.61231006,61501078)
摘    要:对边扫描边跟踪的认知雷达,目标的空间分布特性是实现对雷达信号控制的重要依据之一。本文介绍了一种基于高斯混合概率假设密度(GM-PHD)滤波算法的目标空间分布感知方法,利用该算法,可同时实现多目标高虚警环境下的目标数目和目标空间位置以及运动状态的估计。该算法实际是一种对标准GM-PHD滤波器的改进算法,能在新生目标强度未知的情况下完成对新生目标的检测跟踪。实验表明该算法不仅能在未知新生目标强度的情况下检测并跟踪新生目标,且在新生目标速度较大的情况下,该算法对新生目标的检测性能优于标准GM-PHD滤波器。

关 键 词:目标分布感知  概率假设密度滤波器  多目标跟踪  航迹管理

Target Spatial Distribution Perception Algorithm Based on GM-PHD
LIU Yi,ZHANG Shufang,SUO Jidong. Target Spatial Distribution Perception Algorithm Based on GM-PHD[J]. Radar Science and Technology, 2020, 18(3): 279-286
Authors:LIU Yi  ZHANG Shufang  SUO Jidong
Affiliation:Dalian Maritime University, Dalian 116026, China
Abstract:For track-while-scan (TWS) cognitive radar, the spatial distribution characteristic of target is one of the important references to realize the control of radar signal. In this paper, a target spatial distribution perception method based on the Gaussian mixture probability hypothesis density (GM-PHD) filtering algorithm is introduced, which can be used to simultaneously estimate the number, spatial positions, and motion states of targets in the environment of multiple target and high false alarm rate. This algorithm is actually an improved algorithm for the standard GM-PHD filter. It can complete the detection and tracking of newborn targets when the strength of newborn targets is unknown. Experiments show that the algorithm can not only detect and track newborn targets with unknown strength, but also outperform the standard GM-PHD filter in detecting newborn targets with high speed.
Keywords:target distribution perception   GM-PHD filter   multi-target tracking(MTT)   track management
本文献已被 万方数据 等数据库收录!
点击此处可从《雷达科学与技术》浏览原始摘要信息
点击此处可从《雷达科学与技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号