首页 | 本学科首页   官方微博 | 高级检索  
     

基于多线性主成分分析和径向基神经网络的储粮温度变化预测
引用本文:王孝成,廉飞宇,张元. 基于多线性主成分分析和径向基神经网络的储粮温度变化预测[J]. 粮食与饲料工业, 2019, 0(2): 13-17
作者姓名:王孝成  廉飞宇  张元
作者单位:河南工业大学 信息科学与工程学院,河南 郑州,450001;河南工业大学 信息科学与工程学院,河南 郑州 450001;河南工业大学 粮食信息处理与控制教育部重点实验室,河南郑州 450001
基金项目:河南省高等学校重点科研项目
摘    要:储粮温度预测有利于及时采取通风降温等措施保障储粮安全,因而具有重要意义。传统预测方法多是基于历史温度数据的向量形式进行特征提取,破坏了原有数据的高阶特性和内部结构,导致局部空间信息丢失,预测精度难以满足要求。针对这一问题,提出了一种以数据张量表示为基础的多线性主成分分析方法。该方法保留了粮堆温度历史数据的高阶性,即在使用多线性主成分分析进行特征提取和降维的同时,充分保留了原有数据的内部结构,因而提取的特征更为有效。试验表明,本方法预测结果优于其他典型预测方法。

关 键 词:储粮温度  高阶张量  多线性主成分分析  径向基函数神经网络  温度预测

A pediction of temperature change tendency for grain storage based on multi-linear principle component analysis and radial basis neural network
WANG Xiao-cheng,LIAN Fei-yu,ZHANG Yuan. A pediction of temperature change tendency for grain storage based on multi-linear principle component analysis and radial basis neural network[J]. Cereal & Feed Industry, 2019, 0(2): 13-17
Authors:WANG Xiao-cheng  LIAN Fei-yu  ZHANG Yuan
Affiliation:(College of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China;Key Laboratory of Grain Information Processing and Control,Ministry of Education,Zhengzhou 450001,China)
Abstract:A prediction of temperature helps to adopt cooling measures such as ventilate timely to guarantee safety of storage grain.Because the traditional methods destroy high order features and internal structure,which results in the loss of local space information,when abstracting features based on history temperature data,adequate prediction accuracy usually can't be obtained.For the problem,a new method titled multi-linear principle component analysis(MPCA)was proposed based on data tensor representation.This method retained the high order feature of history temperature data of storage grain,to be specific,and retained the internal structure of the original data adequately when abstracting features using MPCA,which made the abstracted features more effective.The experimental results showed that the method was superior to other typical methods.
Keywords:temperature of storage grain  high order tensor  multi-linear principle component analysis  radial basis function neural network  temperature prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号