首页 | 本学科首页   官方微博 | 高级检索  
     


Plastic deformation analysis of strain-rate sensitive materials under plane strain conditions
Authors:Y S Lee  A T Male
Affiliation:Research and Development Center, Westinghouse Electric Corporation, Pittsburgh, PA 15235, U.S.A.
Abstract:The two-dimensional plane strain equation of plastic flow in accordance with the Levy-Mises constitutive relation is expressed in terms of stream functions of complex variables. Expressions for the stress, strain-rate and velocity are derived, assuming the stream function in the forms of both the summation and product of conjugate flow functions, for plastic flow in a nonlinear viscous (strain-rate sensitive) medium. The plastic states are also derived using a mixed mode solution expressed in terms of non-separable, independent conjugate complex variables. Application of the summation form solution is illustrated through the block indentation problem. Calculations are made on the effect of variation of the strain-rate sensitivity exponent on the contact stress. The predicted behavior of the contact stress suggests the possibility of the development of a specially instrumented plane strain block indentation test for the rapid determination of the strain-rate sensitivity of real materials. By reducing the results of the indentation of a perfectly plastic material it is found that the contact stress is uniform and the external load is constant. The stress on the contact surface obtained using the present analysis is identical to that available from a slip line solution to the problem.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号