首页 | 本学科首页   官方微博 | 高级检索  
     


DEM simulation of shear vibrational fluidization of granular material
Authors:Zhihua Zhang  Yifei Cui  Dave H. Chan  Karén A. Taslagyan
Affiliation:1.School of Transportation,Wuhan University of Technology,Wuhan,China;2.Department of Civil and Environmental Engineering,Hong Kong University of Science and Technology,Clear Water Bay,Hong Kong;3.College of Civil Engineering and Architecture,China Three Gorges University,Yichang,China;4.Department of Civil and Environmental Engineering,University of Alberta,Edmonton,Canada;5.Shannon & Wilson, Inc.,Fairbanks,USA
Abstract:Fluidization of dry granular material is the transition from a solid state to a liquid state when sufficient energy is applied during vibration. This behavior is important because it is closely related to deformations of geotechnical structures during an earthquake. The scientific challenge lies in the understanding on how strain localization is related to the fluidization zone during the entire shearing process. Despite the importance of the mechanical behavior of granular material during fluidization, it cannot be easily characterized using traditional direct shear test. In this paper, 2D DEM model is firstly conduct, shear vibrational fluidization is defined for dry granular material, and the discrete element method has been used to simulate the direct shear test on granular material under vibrational loading during shearing. The peak, residual and vibro-residual shear strength envelopes have been obtained from the numerical simulations. Three distinct zones have been identified in the upper shear box based on the observed changes in volumetric strain before vibration. During vibration, fluidization occurs in the three zones with the characteristics that the shear stress, porosity, volumetric strain, and the coordination number drop to relatively lower values. During vibration, material becomes denser than the critical state, and strain localization has been relieved. Densification of the material at the shear zone leads to a strengthening of the material which increases the shearing resistance after vibration. Furthermore, a comparison of the 2D and 3D simulations is performed. Results reveal that the motion of particles in the out-of-plane direction in the 3D simulations lead to smoother shear stress and more consistent with the experimental result.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号