首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of process parameters on average particle speeds in a vibratory finisher
Authors:Lucas da Silva Maciel  Jan K. Spelt
Affiliation:1.Department of Mechanical and Industrial Engineering,University of Toronto,Toronto,Canada
Abstract:Vibratory finishing (VF) employs vibrationally-fluidized granular media to finish the surfaces of workpieces that are entrained in the flowing media. Its application has been based mostly on experience and trial-and-error due to the complexity of the granular material behavior. The present study used discrete element modeling (DEM) to investigate how the movement of a commercial two-dimensional tub finisher influenced the average particle speed of the media in a bed of smooth, steel, spherical particles, and thus the work that would be done on an entrained workpiece. The parameters governing the tub wall motion (frequency, in-plane amplitudes, and phases of vibration) and the coefficient of friction between the media and the wall were systematically varied in 71 three-dimensional DEM simulations. The average particle speed was affected mostly by the vertical amplitude of tub motion rather than by the frequency, and was mostly independent of other parameters of motion and of the wall friction. A strong relationship was found between the average particle speed and the work done by the wall per cycle of vibration. The normal force on the wall was also found to correlate strongly with the normal component of the wall velocity. Together, these relationships offer the potential to enable the analytical prediction of the average particle speed based on the motion parameters of the tub alone. The paper provides a set of practical guidelines for the control of the average particle speed in VF that are explained by the forces between the media and walls of the tub finisher.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号