首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrophobic amino acids grafted onto chitosan: a novel amphiphilic chitosan nanocarrier for hydrophobic drugs
Authors:Marjan Motiei  Avat Taherpour
Affiliation:1. Department of Biology, Faculty of Science, Razi University, Kermanshah, Islamic Republic of Iran;2. Department of Organic Chemistry, Chemistry Faculty, Razi University, Kermanshah, Islamic Republic of Iran;3. Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
Abstract:Abstract

Objective: The objective of this study is to develop a novel biocompatible amphiphilic drug delivery for hydrophobic drugs, chitosan (CS) was grafted to a series of hydrophobic amino acids including l-alanine (A), l-proline (P), and l-tryptophan (W) by carbodiimide mediated coupling reaction.

Materials and methods: Chemical characteristics of the modified polymers were determined and confirmed by FT-IR, 1H NMR, and UV–vis spectroscopy and the degree of substitution was quantified by elemental analysis. The modified polymers were used to form amphiphilic chitosan nanocarriers (ACNs) by the conventional self-assembly method using ultrasound technique. The morphology and the size of ACNs were analyzed by scanning electron microscope (SEM) and Dynamic light scattering (DLS).

Results and discussion: The sizes of spherical ACNs analyzed by SEM were obviously smaller than those of determined by DLS. The ACNs effectively surrounded the hydrophobic model drug, letrozole (LTZ), and demonstrated different encapsulation efficiencies (EE), loading capacities (LC), and controlled drug release profiles. The characteristics of ACNs and the mechanism of drug encapsulation were confirmed by molecular modeling method. The modeling of the structures of LTZ, profiles of A, P, and W grafted onto CS and the wrapping process around LTZ was performed by quantum mechanics (QM) methods. There was a good agreement between the experimental and theoretical results. The cell viability was also evaluated in two cell lines compared with free drug by MTT assay.

Conclusion: The hydrophobic portion effects on ACNs’ characteristics and the proper selection of amino acid demonstrate a promising potential for drug delivery vector.
Keywords:Amphiphilic nanocarrier  hydrophobic amino acids  letrozole  controlled release  cytotoxicity  solubility
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号