1 kWe sodium borohydride hydrogen generation system: Part II: Reactor modeling |
| |
Authors: | Jinsong Zhang Yuan ZhengJay P. Gore Issam MudawarT.S. Fisher |
| |
Affiliation: | School of Mechanical Engineering, The Energy Center at Discovery Park, Purdue University, West Lafayette, IN 47907-2088, USA |
| |
Abstract: | Sodium borohydride (NaBH4) hydrogen storage systems offer many advantages for hydrogen storage applications. The physical processes inside a NaBH4 packed bed reactor involve multi-component and multi-phase flow and multi-mode heat and mass transfer. These processes are also coupled with reaction kinetics. To guide reactor design and optimization, a reactor model involving all of these processes is desired. A one-dimensional numerical model in conjunction with the assumption of homogeneous catalysis is developed in this study. Two submodels have been created to simulate non-isothermal water evaporation processes and pressure drop of two-phase flow through the porous medium. The diffusion coefficient of liquid inside the porous catalyst pellets and the mass transfer coefficient of water vapor are estimated by fitting experimental data at one specified condition and have been verified at other conditions. The predicted temperature profiles, fuel conversion, relative humidity and pressure drops match experimental data reasonably well. |
| |
Keywords: | Sodium borohydride Reactor modeling Porous media Multi-phase |
本文献已被 ScienceDirect 等数据库收录! |