首页 | 本学科首页   官方微博 | 高级检索  
     


Water and air management systems for a passive direct methanol fuel cell
Authors:Gregory Jewett  Zhen GuoAmir Faghri
Affiliation:Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
Abstract:In this paper water and air management systems were developed for a miniature, passive direct methanol fuel cell (DMFC). The membrane thickness, water management system, air management system and gas diffusion electrodes (GDE) were examined to find their effects on the water balance coefficient, fuel utilization efficiency, energy efficiency and power density. Two membranes were used, Nafion® 112 and Nafion® 117. Nafion® 117 cells had greater water balance coefficients, higher fuel utilization efficiency and greater energy efficiency. A passive water management system which utilizes additional cathode gas diffusion layers (GDL) and a passive air management system which makes use of air filters was developed and tested. Water management was improved with the addition of two additional cathode GDLs. The water balance coefficients were increased from −1.930 to 1.021 for a cell using a 3.0 mol kg−1 solution at a current density of 33 mA cm−2. The addition of an air filter further increased the water balance coefficient to 1.131. Maximum power density was improved from 20 mW cm−2 to 25 mW cm−2 for 3.0 mol kg−1 solutions by upgrading from second to third generation GDEs, obtained from E-TEK. There was no significant difference in water management found between second and third generation GDEs. A fuel utilization efficiency of 63% and energy efficiency of 16% was achieved for a 3.0 mol kg−1 solution with a current density of 66 mA cm−2 for third generation GDEs.
Keywords:Direct methanol fuel cell  Water management  Air breathing  Passive
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号