首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of magnesium ions on both VHG batch and continuous fruit wine fermentations
Authors:Sylwia Bonin
Affiliation:Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences – SGGW, , PL, 02676 Warszawa, Poland
Abstract:In Poland, fruit wines or aromatized fruit wines are semi‐sweet or sweet and contain approximately 15–16% (v/v) ethanol. Their production can be classified as a very high‐gravity (VHG) fermentation. Magnesium has a beneficial effect on VHG fermentations as it protects the yeast cells against ethanol, osmotic and temperature stress. The effect of the magnesium concentration in an apple must, containing 32% sugars, on the fermentative parameters of batch and continuous fermentations was assessed. In the batch process, a magnesium concentration of ~8.5 mg/L resulted in decreased the ethanol production in comparison to a magnesium concentration of ~250, 490 and 970 mg Mg2+/L. The highest amount of Mg also caused a metallic taste. A continuous fermentation was carried out for 2.5 months in a four‐column packed‐bed fermentor. The medium contained ~50, 250 and 490 mg Mg2+/L and the yeast was immobilized on foam glass. During the continuous fermentation, no differences at p ≤ 0.05 in terms of fermentative parameters were seen with magnesium additions. The same beginning amount of magnesium ions in the medium led to a similar use of this element, both in batch and in continuous fermentation. The more Mg2+ that was present in the medium, the more Mg2+ was used by the yeast. The results suggest that the minimal dose of magnesium, under the described conditions, is 50 mg/L, corresponding to the amount of Mg in the medium prepared using concentrated apple juice and tap water. This finding has industrial significance, as Polish wine companies prepare their fruit musts using tap water. Copyright © 2014 The Institute of Brewing & Distilling
Keywords:magnesium  continuous fermentation  very high gravity fermentation  immobilization  Saccharomyces bayanus
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号