首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进Criminisi算法的地基云图修复方法
引用本文:路志英,周庆霞,李鑫. 基于改进Criminisi算法的地基云图修复方法[J]. 数据采集与处理, 2019, 34(1): 12-21
作者姓名:路志英  周庆霞  李鑫
作者单位:天津大学电气自动化与信息工程学院,天津,300072
基金项目:国家自然科学基金51677123国家自然科学基金(51677123)资助项目。
摘    要:全天空成像仪(Total sky imager,TSI)对天空进行观测时,设备的结构特点会使采集到的云图信息不完整,对图像的分析造成不利影响。针对Criminisi算法修复地基云图所造成修复顺序发生错误、图像不连续以及匹配块遍历搜索时间复杂度大的问题,本文提出了一种基于改进Criminisi算法的地基云图修复方法。该算法改进了优先权计算公式,引入地基云图独特的红蓝比特征作为置信项,使得含有更多信息的像素块具有更高的优先级,在搜索匹配块的过程中,基于启发信息选择匹配区域的大小,避免了搜索到离待修复块较远的相关性较低的匹配块,也有效缩短了匹配块搜索时间,降低了算法的时间复杂度。实验结果表明,改进后的Criminisi算法具有较好的图像修复效果,且降低了时间复杂度,提高了修复效率。

关 键 词:地基云图  图像修复  优选权函数  匹配区域
收稿时间:2018-11-20
修稿时间:2018-12-29

Ground-Based Cloud Image Inpainting Method Based on Improved CriminisiAlgorithm
Lu Zhiying,Zhou Qingxi,Li Xin. Ground-Based Cloud Image Inpainting Method Based on Improved CriminisiAlgorithm[J]. Journal of Data Acquisition & Processing, 2019, 34(1): 12-21
Authors:Lu Zhiying  Zhou Qingxi  Li Xin
Affiliation:School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
Abstract:When the total sky imager (TSI) is used to observe the sky, the structural characteristics of the device will make the collected cloud image information incomplete, which affects the analysis of images. In order to deal with the problems, including the wrong order due to the sharp decrease to zero of the confidence level, the discontinuity of image and the large complexity of time for traversal searching the matching block in the process of repairing ground-based cloud image by the Criminisi algorithm, we propose a ground-based cloud image inpainting method based on the improved Criminisi algorithm in this paper. The calculation formula of priority is improved, and the unique red-blue ratio feature of the ground-based cloud map is introduced as a confidence term, so that the pixel block with more information has higher priority. In the process of searching for the matching block, the searching area is selected based on heuristic information in order to avoid the blocks far away from the block to be repaired and those with low correlation, which effectively shortens the searching time and reduces the time complexity of the algorithm. Experimental results show that the improved Criminisi algorithm has better image restoration effect, can reduce the time complexity and improve the image inpainting efficiency.
Keywords:ground-based cloud image  image inpainting  priority function  matching region
点击此处可从《数据采集与处理》浏览原始摘要信息
点击此处可从《数据采集与处理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号