首页 | 本学科首页   官方微博 | 高级检索  
     

基于ISTA算法的稀疏约束反演谱分解及应用
引用本文:高秋菊,张云银,曲志鹏,徐彦凯,王宗家,王千军. 基于ISTA算法的稀疏约束反演谱分解及应用[J]. 新疆石油地质, 2020, 41(4): 471-476. DOI: 10.7657/XJPG20200413
作者姓名:高秋菊  张云银  曲志鹏  徐彦凯  王宗家  王千军
作者单位:1.中国石化 胜利油田分公司 a.物探研究院;b.勘探开发研究院,山东 东营 257000;2.中国石油大学(北京) 信息科学与工程学院,北京 102249
基金项目:国家科技重大专项(2017ZX05072)
摘    要:常规谱分解的分辨率难以满足地震解释的需求,稀疏约束反演谱分解可以很好地解决该问题。稀疏约束反演谱分解是把地震信号看成已知的子波矩阵库和伪反射系数的褶积,从而将谱分解问题转化为一个反问题来求解,其核心内容是如何快速获得最优解。采用L1范数正则化的L2范数作为稀疏约束反演谱分解的目标函数,并通过迭代阈值算法求解稀疏反问题。为了进一步提高计算速度,基于Ricker子波构建一种新的算子,并用ISTA算法进行计算。在此基础上,将稀疏约束反演谱分解用于模拟信号的数值试验,并与常规谱分解结果进行比较。结果表明,稀疏约束反演谱分解具有更好的时频聚集性和更高的时频分辨率;进一步应用于济阳坳陷沾化凹陷渤南洼陷义176井区地震资料,处理结果对油气响应十分敏感,可以较好地识别油气储集层。

关 键 词:ISTA算法  稀疏约束反演  谱分解  连续小波变换  油气检测  L1范数正则化  Ricker子波  低频阴影  
收稿时间:2019-04-15

Decomposition and Application of Constrained Sparse Inversion Spectrum Based on ISTA Algorithm
GAO Qiuju,ZHANG Yunyin,QU Zhipeng,XU Yankai,WANG Zongjia,WANG Qianjun. Decomposition and Application of Constrained Sparse Inversion Spectrum Based on ISTA Algorithm[J]. Xinjiang Petroleum Geology, 2020, 41(4): 471-476. DOI: 10.7657/XJPG20200413
Authors:GAO Qiuju  ZHANG Yunyin  QU Zhipeng  XU Yankai  WANG Zongjia  WANG Qianjun
Affiliation:1. Sinopec Shengli Oilfield Company, a.Institute of Geophysics; b.Research Institute of Exploration and Development, Dongying, Shandong 257000, China;2. School of Geosciences and Information Engineering, China University of Petroleum, Beijing 102249, China
Abstract:The resolution of conventional spectral decomposition can’t meet the needs of seismic interpretation, which can be well solved by the spectral decomposition of constrained sparse inversion. In this method, seismic signal is regarded as the convolution of known wavelet matrix library and pseudo-reflection coefficient, then the spectral decomposition is transformed into an inverse problem which focuses on how to obtain an optimum solution. The L2 norm regularized by L1 norm is used as the objective function for the constrained sparse inversion spectrum decomposition, then the iterative threshold algorithm is used to obtain the solution of the inverse problem. In order to improve the calculation speed of spectral decomposition, a new kind of operator is established on the basis of Ricker wavelet and the optimal solution can be obtained by ISTA algorithm. Based on which, the spectral decomposition of constrained sparse inversion is applied into numerical modeling and the results are compared with those of conventional spectral decomposition. The results show that the spectral decomposition of constrained sparse inversion has high time-frequency resolution. The actual application of the algorithm in the Wellblock Yi176 of Bonan sag in Jiyang depression indicates that the processing result is sensitive to oil and gas, which can be used to identify oil and gas reservoirs.
Keywords:ISTA algorithm  constrained sparse inversion  spectral decomposition  continuous wavelet transform  hydrocarbon detection  L1 norm regularization  Ricker wavelet  low-frequency shadow  
本文献已被 CNKI 等数据库收录!
点击此处可从《新疆石油地质》浏览原始摘要信息
点击此处可从《新疆石油地质》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号