首页 | 本学科首页   官方微博 | 高级检索  
     


Interactive virtual probing of 4D MRI blood-flow
Authors:van Pelt Roy  Bescós Javier Oliván  Breeuwer Marcel  Clough Rachel E  Gröller M Eduard  Romenij Bart ter Haar  Vilanova Anna
Affiliation:Department of Biomedical Engineering, within the group of Biomedical Image Analysis, Eindhoven University of Technology. r.f.p.v.pelt@tue.nl
Abstract:Better understanding of hemodynamics conceivably leads to improved diagnosis and prognosis of cardiovascular diseases. Therefore, an elaborate analysis of the blood-flow in heart and thoracic arteries is essential. Contemporary MRI techniques enable acquisition of quantitative time-resolved flow information, resulting in 4D velocity fields that capture the blood-flow behavior. Visual exploration of these fields provides comprehensive insight into the unsteady blood-flow behavior, and precedes a quantitative analysis of additional blood-flow parameters. The complete inspection requires accurate segmentation of anatomical structures, encompassing a time-consuming and hard-to-automate process, especially for malformed morphologies. We present a way to avoid the laborious segmentation process in case of qualitative inspection, by introducing an interactive virtual probe. This probe is positioned semi-automatically within the blood-flow field, and serves as a navigational object for visual exploration. The difficult task of determining position and orientation along the view-direction is automated by a fitting approach, aligning the probe with the orientations of the velocity field. The aligned probe provides an interactive seeding basis for various flow visualization approaches. We demonstrate illustration-inspired particles, integral lines and integral surfaces, conveying distinct characteristics of the unsteady blood-flow. Lastly, we present the results of an evaluation with domain experts, valuing the practical use of our probe and flow visualization techniques.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号