首页 | 本学科首页   官方微博 | 高级检索  
     


A numerical modelling for the extraction of decay regions from color images of monuments
Authors:Maria Mercede Cerimele  Rossella Cossu
Affiliation:Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185, Roma, Italy
Abstract:An innovative application focused on the segmentation of decay zones from images of stone materials is presented. The adopted numerical approach to extract decay regions from the color images of monuments provides a tool that helps experts analyze degraded regions by contouring them. In this way even if the results of the proposed procedure depend on the evaluation of experts, the approach can be a contribution to improving the efficiency of the boundary detection process. The segmentation is a process that allows an image to be divided into disjoint zones so that partitioned zones contain homogeneous characteristics. The numerical method, used to segment color images, is based on the theory of interface evolution, which is described by the eikonal equation. We adopted the fast marching technique to solve the upwind finite difference approximation of the eikonal equation. The fast marching starts from a seed point in the region of interest and generates a front which evolves according to a specific speed function until the boundary of the region is identified. We describe the segmentation results obtained with two speed functions, attained by the image gradient computation and color information about the object of interest. Moreover, we present the extension of the working modality of the method by introducing the possibility to extract the regions not only in a local way but also in a global way on the entire image. In this case, in order to improve the segmentation efficiency the application of the fast marching technique starts with more seed points defined as seed regions. The study case concerns the impressive remains of the Roman Theatre in the city of Aosta (Italy). In the image segmentation process the color space LabLab is utilized.
Keywords:Eikonal equation  Finite difference approximation  Fast marching  Segmentation  Color image
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号