首页 | 本学科首页   官方微博 | 高级检索  
     


Gold nanorod enhanced organic photovoltaics: The importance of morphology effects
Affiliation:1. Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, United States;2. MIT Building E25-406 77, Massachusetts Avenue, Cambridge, MA 02139, United States;3. Institute for Advanced Materials Devices and Nanotechnology, Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, United States;4. 3005 Hobson Way, Air Force Research Laboratory, Wright Patterson, OH 45433, United States;1. Lviv Polytechnic National University, S. Bandera 12, 79013 Lviv, Ukraine;2. Electronic Materials Division, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany;3. Department of Organic Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania;1. Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg, Germany;2. Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany;1. Fondazione Istituto Italiano di Tecnologia, Centre for Nanoscience and Technology@PoliMi, Via Giovanni Pascoli 70/3, 20133 Milano, Italy;2. Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain;3. Max-Planck-Institut für Kohlenforschung (MPI-KOFO), Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany;4. Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR Demokritos, Agia Paraskevi Attikis, P.O. Box 60037, 15310 Athens, Greece;5. School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore;6. Centre for Polymer Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India;7. Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany;1. Hyogo Prefectural Institute of Technology, 3-1-12 Yukihira-cho, Suma, Kobe, Hyogo 654-0037, Japan;2. Sumitomo Seika Chemicals Co., Ltd., 346-1 Miyanishi, Harima-cho, Kako-gun, Hyogo 675-0145, Japan;3. Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan;4. Kyoto Institute of Technology, Department of Macromolecular Science and Engineering, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan;1. Department of Chemistry, Research Institute for Natural Sciences, Korea University, 5 Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea;2. Future Convergence Research Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Republic of Korea;3. Display and Nanosystem Laboratory, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-713, Republic of Korea
Abstract:Organic photovoltaic devices with a 30% improvement in power conversion efficiency are achieved when gold nanorods (Au NR) are incorporated into the active bulk heterojunction (BHJ) layer. Detailed analysis of the system is provided through microscopy, device characterization, and spectroscopy, demonstrating that the enhancement effects are predominantly caused by induced morphology changes in the BHJ film rather than plasmonic effects. Wide angle X-ray diffraction provides evidence that the nanorods loaded into the BHJ film have an effect on polymer crystal orientation, leading to a systematic performance increase in the devices as a result of both internal and external efficiency improvements.
Keywords:Organic photovoltaics  Bulk heterojunction  Plasmon  Nanoparticle  Nanorod
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号