首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于分级RBF网络的车牌字符识别方法
引用本文:李孟歆,吴成东,夏兴华. 一种基于分级RBF网络的车牌字符识别方法[J]. 计算机工程与应用, 2008, 44(30): 213-216. DOI: 10.3778/j.issn.1002-8331.2008.30.065
作者姓名:李孟歆  吴成东  夏兴华
作者单位:东北大学,信息科学与工程学院,沈阳,110004;沈阳建筑大学,信息与控制工程学院,沈阳,110168;东北大学,信息科学与工程学院,沈阳,110004;沈阳建筑大学,信息与控制工程学院,沈阳,110168
基金项目:科技部国际科技合作项目
摘    要:提出了一种基于分级RBF神经网络的车牌字符识别方法,采用两级RBF神经网络结构,由一级网络识别后,根据识别结果和置信度,建立识别分布图,进行二级网络设计,确定了12个二级子网。RBF网络中自动确定隐层神经元数,无需实验调整。用大量样本对系统进行测试,车牌整体识别率达到了85.4%,通过对比性研究,验证了该方法的有效性和先进性。

关 键 词:车牌识别  径向基函数(RBF)网络  二级网络  识别率
收稿时间:2008-06-30
修稿时间:2008-8-1 

Pattern recognition method for license plate character based on multilevel RBF network
LI Meng-xin,WU Cheng-dong,XIA Xing-hua. Pattern recognition method for license plate character based on multilevel RBF network[J]. Computer Engineering and Applications, 2008, 44(30): 213-216. DOI: 10.3778/j.issn.1002-8331.2008.30.065
Authors:LI Meng-xin  WU Cheng-dong  XIA Xing-hua
Affiliation:1.School of Information Science & Engineering,Northeastern University,Shenyang 110004,China 2.School of Information and Control Engineering,Shenyang Jianzhu University,Shenyang 110168,China
Abstract:A new recognition algorithm for license plate character based on multi-level RBF network is proposed.Two-level RBF network is adopted.According to recognition results from one-level network and the confidence levels,recognition distribution table is built,and two-level network is accordingly designed.As a result,12 two-level sub-networks are formed.A large amount of samples are used for system test.Overall recognition accuracy is 85.4%.Through contrastive research,the method presented is proved to be effective and advanced.
Keywords:license plate recognition  Radial Basis Function(RBF) network  two-level network  recognition accuracy
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号