首页 | 本学科首页   官方微博 | 高级检索  
     

基于自组织神经网络的声学底质分类研究
引用本文:唐秋华,刘保华,陈永奇,周兴华,丁继胜. 基于自组织神经网络的声学底质分类研究[J]. 声学技术, 2007, 26(3): 380-384
作者姓名:唐秋华  刘保华  陈永奇  周兴华  丁继胜
作者单位:1. 中国海洋大学海洋地球科学学院,青岛,266003;国家海洋局第一海洋研究所,青岛,266001;香港理工大学土地测量及地理资讯学系,香港
2. 国家海洋局第一海洋研究所,青岛,266001
3. 香港理工大学土地测量及地理资讯学系,香港
基金项目:国家高技术研究发展计划(863计划);国家自然科学基金;香港研究资助局资助项目
摘    要:研究利用多波束测深系统获取的反向散射强度数据,应用自组织(Self Organizing Map,简称SOM)神经网络分类方法实现了对海底泥、砂、砾石和基岩等底质类型的快速、有效识别。通过实验示例,将SOM神经网络的分类结果与传统海底地质取样获取的真实底质类型进行分析比较,表明该方法是可行和有效的。

关 键 词:SOM神经网络  多波束测深系统  声学底质分类  反向散射强度
文章编号:1000-3630(2007)03-0380-05
收稿时间:2005-11-02
修稿时间:2005-11-022006-06-20

Acoustic seafloor classification using self-organizing map neural network
TANG Qiu-hu,LIU Bao-hu,CHEN Yong-qi,ZHOU Xing-hua and DING Ji-sheng. Acoustic seafloor classification using self-organizing map neural network[J]. Technical Acoustics, 2007, 26(3): 380-384
Authors:TANG Qiu-hu  LIU Bao-hu  CHEN Yong-qi  ZHOU Xing-hua  DING Ji-sheng
Affiliation:1. College of Marine Geosciences, Ocean University of China, Qingdao 266003, China; 2. First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China; 3. Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong
Abstract:Multibeam sonar systems can provide hydrographic quality depth data as well as high-resolution seafloor sonar images. Using the seafloor-backscattered data from each beam and with automatic classification, seabed sediments distribution maps can be obtained directly. In this paper, the self-organizing map (SOM) neural network is used in acoustic seafloor classification from multibeam sonar data. This method can rapidly identify all kinds of seafloor types such as mud, sand, gravel and rock in the experimental surveying areas. Compared with the traditional geologic grab method, the experiment indicates that the SOM method is feasible and valid.
Keywords:SOM neural network  multibeam sonar systems  acoustic seafloor classification  backscatter Strength
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《声学技术》浏览原始摘要信息
点击此处可从《声学技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号