首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应自相关谱峭度图的滚动轴承故障诊断方法
引用本文:郑近德,王兴龙,潘海洋,童靳于,刘庆运. 基于自适应自相关谱峭度图的滚动轴承故障诊断方法[J]. 中国机械工程, 2021, 32(7): 778-785,792. DOI: 10.3969/j.issn.1004-132X.2021.07.003
作者姓名:郑近德  王兴龙  潘海洋  童靳于  刘庆运
作者单位:1.安徽工业大学机械工程学院,马鞍山,2430322.安徽理工大学矿山智能装备与技术安徽省重点实验室,淮南,232001
基金项目:国家重点研发计划(2017YFC0805100);国家自然科学基金(51975004);安徽省高校自然科学研究重点项目(KJ2019A0053,KJ2019A092);安徽理工大学矿山智能装备与技术安徽省重点实验室开放基金(201902005)
摘    要:自相关谱峭度图通过最大重叠离散小波包变换对信号频谱进行分割,并选取最大峭度值所对应频带内的信号进行诊断分析.针对自相关谱峭度图方法在分割频带时因遵循二叉树结构而导致的频带划分区域固定问题,提出一种基于自适应自相关谱峭度图方法的滚动轴承故障诊断方法.自适应自相关谱峭度图方法以改进的经验小波变换为基础,对原始信号傅里叶谱进...

关 键 词:自相关谱峭度图  改进经验小波变换  滚动轴承  故障诊断

Rolling Bearing Fault Diagnosis Method Based on Adaptive Autogram
ZHENG Jinde,WANG Xinglong,PAN Haiyang,TONG Jinyu,LIU Qingyun. Rolling Bearing Fault Diagnosis Method Based on Adaptive Autogram[J]. China Mechanical Engineering, 2021, 32(7): 778-785,792. DOI: 10.3969/j.issn.1004-132X.2021.07.003
Authors:ZHENG Jinde  WANG Xinglong  PAN Haiyang  TONG Jinyu  LIU Qingyun
Affiliation:1.School of Mechanical Engineering,Anhui University of Technology,Maanshan,Anhui,2430322. Anhui Key Laboratory of Mine Intelligent Equipment and Technology,Anhui University of Science & Technology,Huainan,Anhui,232001
Abstract:In Autogram method, the signal spectrum was divided by the maximum overlap discrete wavelet packet transform, and the signals in the frequency band corresponding to the maximum kurtosis value were selected for diagnostic analysis. However, the method followed the binary tree structure when the frequency band was divided, and the division area of this structure was fixed. A fault diagnosis method of rolling bearings was proposed based on adaptive Autogram to solve this problem. The improved empirical wavelet transform was used as the basis of adaptive Autogram. In this process, the original signal Fourier spectrum was enveloped and smoothed and then segmented, thus achieving the purpose of frequency band was adaptively divided by Autogram. The simulation signals and experimental data were analyzed through the proposed method, and the analysis results were compared with the existing fast kurtogram and Autogram. The results show that the optimal demodulation frequency band may be accurately detected by the proposed method, and the fault characteristics are more obvious.
Keywords:Autogram   improved empirical wavelet transform   rolling bearing   fault diagnosis  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号