首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进高斯随机测量矩阵的切削力信号压缩感知方法
引用本文:吴凤和,张宁,李元祥,张会龙,郭保苏. 基于改进高斯随机测量矩阵的切削力信号压缩感知方法[J]. 中国机械工程, 2021, 32(18): 2231-2238. DOI: 10.3969/j.issn.1004-132X.2021.18.012
作者姓名:吴凤和  张宁  李元祥  张会龙  郭保苏
作者单位:1.燕山大学机械工程学院,秦皇岛,0660042.河北省重型智能制造装备技术创新中心,秦皇岛,066004
基金项目:国家重点研发计划(2016YFC0802900);国家自然科学基金(51605422);河北省自然科学基金(E2017203372,E2017203156);河北省高等学校科学技术研究重点项目(ZD2020156)
摘    要:高速加工过程中,依据传统Nyquist-Shannon采样定理进行信号采集通常会面临海量数据的存储、传输和处理难题.基于压缩感知理论提出了一种切削力信号采集新方法,实现信号压缩式采集.选择高斯随机矩阵作为基础测量矩阵,并结合近似正交三角分解和最小相关系数法对高斯随机矩阵进行重新设计,提高其压缩测量性能,再借助高效的压缩...

关 键 词:切削力信号  压缩感知  测量矩阵  压缩采样匹配追踪

Compressed Sensing Method for Cutting Force Signals Based on Improved Gauss Random Measurement Matrix
WU Fenghe,ZHANG Ning,LI Yuanxiang,ZHANG Huilong,GUO Baosu. Compressed Sensing Method for Cutting Force Signals Based on Improved Gauss Random Measurement Matrix[J]. China Mechanical Engineering, 2021, 32(18): 2231-2238. DOI: 10.3969/j.issn.1004-132X.2021.18.012
Authors:WU Fenghe  ZHANG Ning  LI Yuanxiang  ZHANG Huilong  GUO Baosu
Affiliation:1.College of Mechanical Engineering,Yanshan University,Qinhuangdao,Hebei,0660042.Hebei Heavy-duty Intelligent Manufacturing Equipment Technology Innovation Center,Qinhuangdao,Hebei,066004
Abstract:In high-speed cutting processes, traditional Nyquist-Shannon sampling theorem was used for data collection which confront difficult problems of storage, transmission and processing for large amount of cutting force signals. A novel method of cutting force signal acquisition was proposed to realize the compression acquisition of signals based on the ompressed sensing theory. Gauss random matrix was selected as the basic measurement matrix and was redesigned by combining the approximate orthogonal upper triangular decomposition and the minimum correlation coefficient method to improve the compression measurement performance. Then the original cutting force signals were reconstructed from the measurement values by using the efficient compressive sampling matching pursuit algorithm. The experimental results show that the improved Gauss random measurement matrix has higher reconstruction accuracy and stability, and the proposed method greatly reduce the amount of data while ensuring the reconstruction efficiency and accuracy of cutting forces.
Keywords:cutting force signal   compressed sensing   measurement matrix   compressive sampling matching pursuit  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号