首页 | 本学科首页   官方微博 | 高级检索  
     

基于分层因果关系的定性推理方法
引用本文:顾宇红,石纯一. 基于分层因果关系的定性推理方法[J]. 软件学报, 1998, 9(12): 884-888
作者姓名:顾宇红  石纯一
作者单位:清华大学计算机科学与技术系,北京,100084;清华大学计算机科学与技术系,北京,100084
基金项目:本文研究得到国家自然科学基金资助.
摘    要:定性推理能为信息不完全的复杂系统产生行为预测,但推理分支可能出现组合爆炸,限制了它的应用.传统的算法不仅产生无法控制的推理分支,并且占用了大量的内存,不仅使用户不易理解推理的结果,而且甚至导致推理的失败.在LSIM方法的基础上提出了一种基于分层因果关系的定性推理方法LCQR(layered causal qualitative reasoning),旨在解决这一问题,使提取出的变量间的因果关系层次化,并应用于定性推理,取得了较满意的结果.

关 键 词:定性推理  因果关系.
收稿时间:1997-10-15
修稿时间:1998-01-08

A Method of Qualitative Reasoning Based on Layered Causal Relation
GU Yu-hong and SHI Chun-yi. A Method of Qualitative Reasoning Based on Layered Causal Relation[J]. Journal of Software, 1998, 9(12): 884-888
Authors:GU Yu-hong and SHI Chun-yi
Affiliation:Department of Computer Science and Technology Tsinghua University Beijing 100084
Abstract:Qualitative reasoning can predict the system behavior of complicated system with incompleted knowledge, but the combinatorial explosion of reasoning branches limits its application. Traditional algorithms not only produce intractable reasoning branches, but also occupy a lot of memory space. It makes the result of reasoning difficult to be understood, and sometimes it even leads to failure. In this paper, on the base of LSIM, a method of qualitative reasoning based on LCQR(layered causal qualitative reasoning) is proposed to solve this problem. LCQR extracts the causal relation between variables, layers it and utilizes it in qualitative reasoning. The result of LCQR is satisfying.
Keywords:Qualitative reasoning   causal relation.
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号