首页 | 本学科首页   官方微博 | 高级检索  
     

下视SAR数据3维表面重建
引用本文:李晓阳,祝海江,胡伟,李伟,谭维贤.下视SAR数据3维表面重建[J].中国图象图形学报,2016,21(4):456-463.
作者姓名:李晓阳  祝海江  胡伟  李伟  谭维贤
作者单位:北京化工大学信息科学与技术学院, 北京 100029,北京化工大学信息科学与技术学院, 北京 100029,北京化工大学信息科学与技术学院, 北京 100029,北京化工大学信息科学与技术学院, 北京 100029,内蒙古工业大学信息工程学院, 呼和浩特 010051
基金项目:国家自然科学基金项目(61372186);北京高等学校青年英才计划项目(YETP0501);北京化工大学交叉学科项目
摘    要:目的 合成孔径雷达(SAR)因成像方法、几何角度等原因使得采集到的数据具有稀疏性及残缺性,如果直接用其进行建模,不能真实地还原物体。针对下视SAR数据的特点,提出一种在建模过程中能够自动修补稀疏及残缺数据的重建方法。方法 首先引入大津法对3维SAR数据进行预处理,然后将2维图像分割方法中的Chan-Vese模型推广应用到下视SAR数据的表面重建中,在初始表面及轮廓指示函数的求取过程中引入距离函数和内积函数。结果 将本文方法与等值面抽取法的重建结果进行比较,本文方法在重建的过程中能够自动修补空洞,重建出的模型表面更加光滑,能更加真实地反映原物体的特征。结论 可以将本文方法推广应用到稀疏及残缺SAR数据的建模中。

关 键 词:下视SAR数据  空洞修补  3维重建  Chan-Vese模型
收稿时间:2015/6/29 0:00:00
修稿时间:2015/11/8 0:00:00

Downward-looking 3D SAR data surface reconstruction
Li Xiaoyang,Zhu Haijiang,Hu Wei,Li Wei and Tan Weixian.Downward-looking 3D SAR data surface reconstruction[J].Journal of Image and Graphics,2016,21(4):456-463.
Authors:Li Xiaoyang  Zhu Haijiang  Hu Wei  Li Wei and Tan Weixian
Affiliation:College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China,College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China,College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China,College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China and College of Information Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
Abstract:Objective The data collected by synthetic aperture radar(SAR) are sparse and incomplete because of the imaging method and geometry angle, which result in difficulties in 3D SAR data surface reconstruction. For downward-looking SAR data, this paper presents a reconstruction method that can repair sparse and incomplete data automatically. Method First, the Otsu method is introduced for the preprocessing of 3D SAR data. Second, the Chan-Vese model of 2D image segmentation method is applied to the surface reconstruction of the downward-looking SAR data. The distance and inner product functions are employed as the initial surface and contour indicator function. Result Compared with the isosurface extraction method, the proposed method can repair the holes automatically during the reconstruction procedure. The reconstructed model surface is smoother and can reflect the characteristics of the original object. Conclusion The proposed method can be applied to the modeling of sparse and incomplete data.
Keywords:downward-looking SAR(synthetic aperture radar) data  hole-filling  3D reconstruction  Chan-Vese model
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号