首页 | 本学科首页   官方微博 | 高级检索  
     

基于多重生成对抗网络的智能开关设备状态感知与诊断研究
引用本文:袁 培,王舶仲,毛文奇,蒋毅舟,李 鹏,王立德,易 进,段浩然. 基于多重生成对抗网络的智能开关设备状态感知与诊断研究[J]. 电力系统保护与控制, 2021, 49(6): 67-75
作者姓名:袁 培  王舶仲  毛文奇  蒋毅舟  李 鹏  王立德  易 进  段浩然
作者单位:国网湖南省电力有限公司电力科学研究院,湖南 长沙 410007;国网湖南省电力有限公司检修公司, 湖南 长沙 410004;国网湖南省电力有限公司,湖南 长沙 410004;湖南大学能源互联网智能信息分析与综合优化湖南省重点实验室,湖南 长沙 410082
基金项目:国家自然科学基金项目资助(51877072);国家电网有限公司总部科技项目资助(5216A0180002)
摘    要:随着电力物联网数据驱动技术的不断发展,传感器采集的设备量测数据规模爆发式增长,海量异构的多源监测数据给智能开关设备的实时状态感知和诊断带来了新的挑战.针对上述问题,提出一种基于多重生成对抗网络和DS证据理论的开关设备状态感知方法.首先基于DS证据理论构造融合视频、温度、压力、姿态传感器等多源数据的基本信任分配,获取表征...

关 键 词:智能开关设备  状态感知  异常诊断  多传感器  多重生成对抗网络
收稿时间:2020-06-27
修稿时间:2020-09-29

Research on state perception and diagnosis of intelligent switches based ontriple generative adversarial networks
YUAN Pei,WANG Bozhong,MAO Wenqi,JIANG Yizhou,LI Peng,WANG Lide,YI Jin,DUAN Haoran. Research on state perception and diagnosis of intelligent switches based ontriple generative adversarial networks[J]. Power System Protection and Control, 2021, 49(6): 67-75
Authors:YUAN Pei  WANG Bozhong  MAO Wenqi  JIANG Yizhou  LI Peng  WANG Lide  YI Jin  DUAN Haoran
Affiliation:1. State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China; 2. State Grid Hunan Electric Power Corporation Maintenance Company, Changsha 410004, China; 3. State Grid Hunan Electric Power Company Limited, Changsha 410004, China; 4. Hunan Key Laboratory of Intelligent Information Analysis and Integrated Optimization for Energy Internet Hunan University, Changsha 410082, China
Abstract:With the continuous development of data driving technology in the power Internet of Things, the scale of device measurement data collected by sensors has grown enormously. Massive and heterogeneous multi-source monitoring data has brought new challenges to real-time state perception and diagnosis of intelligent switches. To tackle these challenges, a switches state perception method based on a Triple Generative Adversarial Network (TGAN) and DS evidence theory is proposed. First, based on DS evidence theory, basic belief assignment that combines multi-source data such as video, temperature, pressure, and attitude sensors are constructed to obtain characteristic information that shows the state of switches. Based on this characteristic information and state classification, a TGAN that includes sample generation, data classification, and feature recognition is established. Comparison, association, clustering and other algorithms are combined with stochastic gradient descent to update layer parameters. Finally, the state perception and diagnosis of switches are achieved. Switches of a certain regional power grid are taken as an example. Analytical results show that the method can accurately perceive the real-time status of switches and raise an alarm for abnormal information.This work is supported by the National Natural Science Foundation of China (No. 51877072) and the Science and Technology Project of the Headquarters of State Grid Corporation of China (No. 5216A0180002).
Keywords:intelligent switches   state perception   abnormity diagnosis   multi-sensor   triple generative adversarial network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号