首页 | 本学科首页   官方微博 | 高级检索  
     

基于三维上下文预测的遥感图象无损压缩
引用本文:沈兰荪,张晓玲,任军. 基于三维上下文预测的遥感图象无损压缩[J]. 中国图象图形学报, 2001, 6(11): 1107-1110
作者姓名:沈兰荪  张晓玲  任军
作者单位:毋立芳(北京工业大学信号与信息处理实验室,北京,100022)      沈兰荪(北京工业大学信号与信息处理实验室,北京,100022)      张晓玲(北京工业大学信号与信息处理实验室,北京,100022)      任军(北京工业大学信号与信息处理实验室,北京,100022)
摘    要:随着遥感技术的发展,其应用领域大大拓展,随之也带来了遥感数据的海量增长,这给存储、传输都带来极大困难,因此必须对遥感数据进行压缩,为了实现遥感数据的高效压缩,提出了一种基于三维上下文预测测的无损压缩编码算法,该算法包括如下三部分;首先,结合多波段遥感图象的特点,综合考虑其二维的空间相关性和谱间相关性,建立了三维预测模型;其次,在三维预测的基础上,进一步进行上下文预测;最后,引入二次预测的思想来去除图象的统计相关性,从而使残差图象的熵得到最大程度的降低,实验结果表明,该算法大大优于最优JPEG;而对AVHRR图象,其预测效果也明显优于空间和谱间最佳线性预测方法(SSOLP)。

关 键 词:三维预测 上下文模型 统计相关 二次预测 图象压缩 无损压缩 遥感图象 图象处理
文章编号:1006-8961(2001)11-1107-04
修稿时间:2000-08-02

Remote Sensing Image Loss less Compression Based on 3D Context Prediction
WU Li-fang,ZHANG Xiao-ling and REN Jun. Remote Sensing Image Loss less Compression Based on 3D Context Prediction[J]. Journal of Image and Graphics, 2001, 6(11): 1107-1110
Authors:WU Li-fang  ZHANG Xiao-ling  REN Jun
Abstract:With the development of remote sensing technology, it has been applied in more and more domains.Therefore, it is necessary to efficiently compress remote sensing data because of the rapid increasing of remote sensing data. In this paper the algorithm includes three parts: first, based on the spatial and inter-spectral correlation of multi-spectral remote sensing images, a 3D prediction model is set up, then the context prediction is made; finally, the re-prediction is used to remove the statistic correlation in the images, and it results in the most decreasing of entropy of the residue. The experimental results represent that the put forward algorithm is much more efficient than the Best JPEG, in addition, it is more efficient for AVHRR images than Spatial &Spectral Optimal Linear Prediction (SSOLP).
Keywords:3D prediction   Context model   Statistic correlation   Re prediction
本文献已被 维普 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号